1
|
Lin Q, Zhao B, Huang J, Chen R, Sun W, Ye Q, Yang L, Zhu X, Li X, Zhang R. Neuropeptides as regulators of bone metabolism: from molecular mechanisms to traditional Chinese medicine intervention strategies. Front Pharmacol 2025; 16:1516038. [PMID: 40093328 PMCID: PMC11906480 DOI: 10.3389/fphar.2025.1516038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Osteoporosis (OP) is a complex bone metabolism disorder disease that affects the skeleton, nervous system, muscles, and multiple tissues. Neuropeptides, which are endogenous substances derived from both bone and brain, play a critical role in maintaining the balance of bone metabolism. This review summarizes research conducted from 1986 to 2024 on the pathological mechanisms of neuropeptides and their receptors in the context of OP. Specifically, the roles of Neuropeptide Y, Vasoactive Intestinal Peptide, Calcitonin Gene-Related Peptide, and Substance P and their receptors in key processes of OP were examined, including their function of bone formation and resorption, osteoblast differentiation, and osteoclast differentiation. Our study showed that these neuropeptides could promote bone formation and inhibit bone resorption, while their receptors in osteocytes exhibit distinct functions, indicating complex regulatory mechanisms that require further investigation. Additionally, we summarize the progress of Traditional Chinese Medicine (TCM) formulae, single TCM herbs, and bioactive compounds derived from TCM in exerting anti-OP effects through neuropeptide modulation. These studies highlight the multi-targeted and multi-mechanistic pharmacological actions of TCM in treating OP. By integrating these findings, we aim to enhance the understanding of neuropeptides' roles in bone metabolism and to explore the development of neuropeptide-targeted TCM therapies for OP management. This comprehensive perspective highlights the potential of neuropeptides as therapeutic targets, paving the way for innovative approaches to treating OP.
Collapse
Affiliation(s)
- Qing Lin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| | - Biyi Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiajia Huang
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Rumeng Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Weipeng Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qianyun Ye
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Ronghua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu H, Wu J, Wu H, Wang T, Zhou H, Liu M. Autologous ADSCs with exogenous NPY promotes fracture healing in ovariectomized rats. Heliyon 2024; 10:e38297. [PMID: 39421363 PMCID: PMC11483299 DOI: 10.1016/j.heliyon.2024.e38297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Objective To evaluate the role of autologous adipose-derived stem cells (ADSCs) with exogenous neuropeptide Y (NPY) on osteoporotic fracture healing. Methods We established a fracture healing model in ovariectomized rats of osteoporosis. Autologous ADSCs, isolated from rats' subcutaneous adipose tissue, with exogenous NPY were transplanted into the fracture site four times a week. The fracture healing was observiked with X-ray diagnostic techniques, and the rats' tibias were taken out for section-staining and micro-CT scanning 3 and 6 weeks after fracture. Next, we explored the underlying mechanism by which the transplantation contributed to fracture healing. Results Co-culture and co-transplantation of ADSCs with NPY could stimulate the osteoporotic fracture healing. NPY may promote the osteogenic differentiation of ADSCs through Y1 receptor. Conclusion This result provides a platform for the development of novel therapies for bone regeneration with endogenous ADSCs.
Collapse
Affiliation(s)
- Hong Liu
- Department of Nutrition, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Jiaoyang Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Huixuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ting Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Min Liu
- Department of Nutrition, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
3
|
Liu Z, Liu M, Xiong Y, Wang Y, Bu X. Crosstalk between bone and brain in Alzheimer's disease: Mechanisms, applications, and perspectives. Alzheimers Dement 2024; 20:5720-5739. [PMID: 38824621 PMCID: PMC11350061 DOI: 10.1002/alz.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.
Collapse
Affiliation(s)
- Zhuo‐Ting Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
| | - Ming‐Han Liu
- Department of OrthopaedicsXinqiao Hospital, Third Military Medical UniversityChongqingChina
| | - Yan Xiong
- Department of OrthopaedicsDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| |
Collapse
|
4
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Li C, Zhu A, Yang L, Wang X, Guo Z. Advances in magnetoelectric composites for promoting bone regeneration: a review. J Mater Chem B 2024; 12:4361-4374. [PMID: 38639047 DOI: 10.1039/d3tb02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Repair of large bone defects is one of the clinical problems that have not yet been fully solved. The dynamic balance of bone tissue is regulated by many biological, chemical and physical environmental factors. Simulating the microenvironment of bone tissue in the physiological state through biomimetic materials is an important development direction of tissue engineering in recent years. With the deepening of research, it has been found that when bone tissue is damaged, its surrounding magnetoelectric microenvironment is subsequently destroyed, and providing a magnetoelectric microenvironment in the biomimetic state will be beneficial to promote bone repair. This review describes the piezoelectric effect of natural bone tissue with magnetoelectric stimulation for bone regeneration, provides a detailed account of the historical development of magnetoelectric composites and the current magnetoelectric composites that are most commonly utilized in the field of tissue engineering. Besides, the hypothesized mechanistic pathways through which magnetoelectric composite materials promote bone regeneration are critically examined, including the enhancement of osteogenesis, promotion of cell adhesion and angiogenesis, modulation of bone immunity, and promotion of nerve regeneration.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Andi Zhu
- Department of Implantology and Prosthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Liqing Yang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Xinyi Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Zehong Guo
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| |
Collapse
|
6
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
7
|
Park EJ, Truong VL, Jeong WS, Min WK. Brain-Derived Neurotrophic Factor (BDNF) Enhances Osteogenesis and May Improve Bone Microarchitecture in an Ovariectomized Rat Model. Cells 2024; 13:518. [PMID: 38534361 PMCID: PMC10969057 DOI: 10.3390/cells13060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.
Collapse
Affiliation(s)
- Eugene J. Park
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Woo-Kie Min
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
8
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
9
|
González-Vergara A, Benavides B, Julio-Pieper M. Mapping and quantifying neuropeptides in the enteric nervous system. J Neurosci Methods 2023; 393:109882. [PMID: 37172914 DOI: 10.1016/j.jneumeth.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Neuropeptides are a highly diverse group of signaling molecules found in the central nervous system (CNS) and peripheral organs, including the enteric nervous system (ENS). Increasing efforts have been focused on dissecting the role of neuropeptides in both neural- and non-neural-related diseases, as well as their potential therapeutic value. In parallel, accurate knowledge on their source of production and pleiotropic functions is still needed to fully understand their implications in biological processes. This review will focus on the analytical challenges involved in studying neuropeptides, particularly in the ENS, a tissue where their abundance is low, together with opportunities for further technical development.
Collapse
Affiliation(s)
- Alex González-Vergara
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Benjamín Benavides
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
10
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
11
|
The Antagonism of Neuropeptide Y Type I Receptor (Y1R) Reserves the Viability of Bone Marrow Stromal Cells in the Milieu of Osteonecrosis of Femoral Head (ONFH). Biomedicines 2022; 10:biomedicines10112942. [PMID: 36428510 PMCID: PMC9687204 DOI: 10.3390/biomedicines10112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropeptide Y (NPY)-Y1 receptor (Y1R) signaling is known to negatively affect bone anabolism. Our study aimed at investigating the impact of NPY-Y1R signaling in the pathogenesis of glucocorticoid-related osteonecrosis of the femoral head (ONFH). Femoral heads were retrieved from 20 patients with and without ONFH, respectively. The bone marrow stromal cells (BMSCs) from ONFH femoral heads were treated with Y1R agonists and antagonists for subsequent analysis. We showed that the local NPY expression level was lower in ONFH heads. The Y1R agonists and antagonists disturb and facilitate the survival of BMSCs. The transcription of stromal derived factor-1 (SDF-1) was enhanced by Y1R antagonists. Our study showed that the local NPY expression level was lower in ONFH heads. Y1R antagonists facilitate the survival of BMSCs and stimulate the transcription of SDF-1 by BMSCs. These findings shed light on the role of NPY-Y1R signaling in the pathogenesis of ONFH.
Collapse
|
12
|
Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13:518. [PMID: 36371202 PMCID: PMC9652959 DOI: 10.1186/s13287-022-03204-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Mahdi Sarzaeem
- Department of Orthopedic Surgery, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran.
| |
Collapse
|
13
|
Profumo E, Maggi E, Arese M, Di Cristofano C, Salvati B, Saso L, Businaro R, Buttari B. Neuropeptide Y Promotes Human M2 Macrophage Polarization and Enhances p62/SQSTM1-Dependent Autophagy and NRF2 Activation. Int J Mol Sci 2022; 23:13009. [PMID: 36361795 PMCID: PMC9653849 DOI: 10.3390/ijms232113009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/15/2023] Open
Abstract
Neuropeptide Y (NPY) is an abundantly expressed peptide capable of modulating innate and adaptive immune responses and regulating chemotaxis and cytokine secretion by macrophages. Abnormal regulation of NPY is involved in the development of atherosclerosis. The inflammatory infiltrate within atherosclerotic plaque is characterized by accumulation of macrophages, which are subject to reprogram their phenotypes in response to environmental signals. Macrophage number and phenotype influence plaque fate. Here, we investigated the effect of NPY on the changes in phenotype and functions of human macrophages, from the pro-inflammatory phenotype M1 to the reparative M2, indicative of atherosclerosis regression or stabilization. Human monocytes were differentiated in vitro into macrophages with M-CSF (M0) and polarized towards an M1 phenotype with IFN-γ plus LPS M(IFN-γ/LPS) or M2 with IL-10 (M IL-10) and further challenged with NPY (10-7-10-9 M) for 8-36 h. Cell phenotype and functions were analyzed by immunofluorescence and immunochemical analyses. NPY affected macrophage surface markers and secretome profile expression, thus shifting macrophages toward an M2-like phenotype. NPY also prevented the impairment of endocytosis triggered by the oxysterol 7-keto-cholesterol (7KC) and prevented 7KC-induced foam cell formation by reducing the lipid droplet accumulation in M0 macrophages. NPY-treated M0 macrophages enhanced the autophagosome formation by upregulating the cell content of the autophagy markers LC3-II and p62-SQSTM1, increased activation of the anti-oxidative transcription factor NRF2 (NF-E2-related factor 2), and subsequently induced its target gene HMOX1 that encodes heme oxygenase-1. Our findings indicate that NPY has a cytoprotective effect with respect to the progression of the inflammatory pathway, both enhancing p62/SQSTM1-dependent autophagy and the NRF2-antioxidant signaling pathway in macrophages. NPY signaling may have a crucial role in tissue homeostasis in host inflammatory responses through the regulation of macrophage balance and functions within atherosclerosis.
Collapse
Affiliation(s)
- Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudio Di Cristofano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00185 Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
14
|
Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, Xia J. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater 2022; 153:1-12. [PMID: 36116724 DOI: 10.1016/j.actbio.2022.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Numerous tissue regeneration paradigms show evident neurological dependence, including mammalian fingertip, skin, and bone regeneration. The mature skeleton is innervated by an abundant nervous system that infiltrates the developing axial and appendicular bones and maintains the stability of the systemic skeletal system by controlling blood flow, regulating bone metabolism, secreting neurotransmitters, and regulating stem cell behavior. In recent years, neurotization in tissue-engineered bone has been considered as a promising strategy to effectively overcome the challenge of vascularization and innervation regeneration in the central zone of "critical-sized bone defects" that conventional tissue-engineered scaffolds are unable to handle, however, further validation is needed in relevant clinical applications. Therefore, this study reviews the mechanisms by which the nervous system regulates bone metabolism and regeneration through a variety of neurogenic or non-neurogenic factors, as well as the recent progress and design strategies of neuralized tissue-engineered bone, to provide new ideas for further studies on subsequent neural bone tissue engineering. STATEMENT OF SIGNIFICANCE: The interaction of nerve and bone tissue during skeletal development and repair has attracted widespread attention, with emerging evidences highlighting the regulation of bone metabolism and regeneration by the nervous system, but the underlying mechanisms have not been elucidated. Thus, further applications of neuro-bone tissue engineering still needs careful consideration. In this review, we summarize the numerous neurogenic and non-neurogenic factors which are involved in bone repair and regeneration, and further explore the current status of their application and biomaterial design in neuro-bone tissue engineering, and finally discuss the challenge and prospective for neuro-bone tissue engineering to facilitate its further development.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhichao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
15
|
Xu J, Zhang Z, Zhao J, Meyers CA, Lee S, Qin Q, James AW. Interaction between the nervous and skeletal systems. Front Cell Dev Biol 2022; 10:976736. [PMID: 36111341 PMCID: PMC9468661 DOI: 10.3389/fcell.2022.976736] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The skeleton is one of the largest organ systems in the body and is richly innervated by the network of nerves. Peripheral nerves in the skeleton include sensory and sympathetic nerves. Crosstalk between bones and nerves is a hot topic of current research, yet it is not well understood. In this review, we will explore the role of nerves in bone repair and remodeling, as well as summarize the molecular mechanisms by which neurotransmitters regulate osteogenic differentiation. Furthermore, we discuss the skeleton’s role as an endocrine organ that regulates the innervation and function of nerves by secreting bone-derived factors. An understanding of the interactions between nerves and bone can help to prevent and treat bone diseases caused by abnormal innervation or nerve function, develop new strategies for clinical bone regeneration, and improve patient outcomes.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Department of Physical Education, Incheon National University, Incheon, South Korea
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Aaron W. James,
| |
Collapse
|
16
|
Greene ES, Abdelli N, Dridi JS, Dridi S. Avian Neuropeptide Y: Beyond Feed Intake Regulation. Vet Sci 2022; 9:171. [PMID: 35448669 PMCID: PMC9028514 DOI: 10.3390/vetsci9040171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant and ubiquitously expressed neuropeptides in both the central and peripheral nervous systems, and its regulatory effects on feed intake and appetite- have been extensively studied in a wide variety of animals, including mammalian and non-mammalian species. Indeed, NPY has been shown to be involved in the regulation of feed intake and energy homeostasis by exerting stimulatory effects on appetite and feeding behavior in several species including chickens, rabbits, rats and mouse. More recent studies have shown that this neuropeptide and its receptors are expressed in various peripheral tissues, including the thyroid, heart, spleen, adrenal glands, white adipose tissue, muscle and bone. Although well researched centrally, studies investigating the distribution and function of peripherally expressed NPY in avian (non-mammalian vertebrates) species are very limited. Thus, peripherally expressed NPY merits more consideration and further in-depth exploration to fully elucidate its functions, especially in non-mammalian species. The aim of the current review is to provide an integrated synopsis of both centrally and peripherally expressed NPY, with a special focus on the distribution and function of the latter.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| | - Nedra Abdelli
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jalila S. Dridi
- École Universitaire de Kinésithérapie, Université d’Orléans, Rue de Chartres, 45100 Orleans, France;
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (E.S.G.); (N.A.)
| |
Collapse
|
17
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
18
|
Chen QC, Zhang Y. The Role of NPY in the Regulation of Bone Metabolism. Front Endocrinol (Lausanne) 2022; 13:833485. [PMID: 35273572 PMCID: PMC8902412 DOI: 10.3389/fendo.2022.833485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bone diseases are the leading causes of disability and severely compromised quality of life. Neuropeptide Y (NPY) is a multifunctional neuropeptide that participates in various physiological and pathological processes and exists in both the nerve system and bone tissue. In bone tissue, it actively participates in bone metabolism and disease progression through its receptors. Previous studies have focused on the opposite effects of NPY on bone formation and resorption through paracrine modes. In this review, we present a brief overview of the progress made in this research field in recent times in order to provide reference for further understanding the regulatory mechanism of bone physiology and pathological metabolism.
Collapse
Affiliation(s)
- Qing-Chang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yan Zhang,
| |
Collapse
|
19
|
Assefa F, Kim JA, Lim J, Nam SH, Shin HI, Park EK. The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model. Tissue Eng Regen Med 2021; 19:189-202. [PMID: 34951679 PMCID: PMC8782952 DOI: 10.1007/s13770-021-00408-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration. METHODS In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 µg/µl) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology. RESULTS The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). In vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation. CONCLUSION Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea.
| |
Collapse
|
20
|
Winning L, El Karim IA, Linden GJ, Irwin CR, Killough SA, Lundy FT. Differential regulation of NPY and SP receptor expression in STRO-1+ve PDLSCs by inflammatory cytokines. J Periodontal Res 2021; 57:186-194. [PMID: 34773642 DOI: 10.1111/jre.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aims of this study were to investigate neuropeptide receptor expression regulation on STRO-1 +ve periodontal ligament stem cells (PDLSCs) in response to inflammatory cytokines and to investigate a potential osteogenic effect of neuropeptides. BACKGROUND Nerve fibres innervating the periodontal tissues in humans contain several neuropeptides including neuropeptide Y and substance P. The role of neuropeptide receptors on PDLSCs, including their response to the local inflammatory environment of periodontitis, is currently unknown. METHODS A homogenous population of STRO-1 +ve PDLSCs was prepared by immunomagnetic separation of cells obtained by the tissue out-growth method from healthy premolar teeth from a single donor. Regulation of gene expression of the neuropeptide Y Y1 receptor and substance P receptor tachykinin receptor 1 was investigated. A potential osteogenic effect of neuropeptide Y and substance P was also investigated by measuring alkaline phosphatase (ALP) activity, Alizarin red staining and quantifying osteogenic gene expression. RESULTS Treatment of STRO-1 +ve PDLSCs with tumour necrosis factor-alpha or interleukin 1-beta up-regulated the expression of the neuropeptide Y's Y1 receptor, but down-regulated substance P's receptor. Significantly increased ALP activity was observed in STRO-1 +ve PDLSCs treated with neuropeptide Y but not substance P. Further studies showed that neuropeptide Y had a modest osteogenic effect on cells at both a functional level and a gene level. CONCLUSIONS Expression of the neuropeptide Y Y1 receptor gene on STRO-1 +ve PDLSCs was sensitive to local inflammatory cytokines. Treatment of cells with neuropeptide Y was found to produce a modest enhanced osteogenic effect.
Collapse
Affiliation(s)
- Lewis Winning
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland.,Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Ikhlas A El Karim
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Gerard J Linden
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Christopher R Irwin
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Simon A Killough
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Fionnuala T Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
21
|
Chen Y, Zhang T, Wan L, Wang Z, Li S, Hu J, Xu D, Lu H. Early treadmill running delays rotator cuff healing via Neuropeptide Y mediated inactivation of the Wnt/β-catenin signaling. J Orthop Translat 2021; 30:103-111. [PMID: 34722153 PMCID: PMC8517718 DOI: 10.1016/j.jot.2021.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Defining the optimal rehabilitation programs for rotator cuff healing remains a challenge. Early treadmill running may have negative effects on tendon-bone interface (TBI) healing with increased expression of Neuropeptide Y (NPY). However, the underlying mechanism is still unknown. Methods The mice were randomly assigned to four groups: control group, treadmill group, treadmill + BIBO3304 group and BIBO3304 group alone. Specifically, the control group was allowed free cage activity without any treatment after surgery. The treadmill group received early treadmill running initiated from postoperative day 2. The treadmill + BIBO3304 group received treadmill running combined with intra-articular injection of BIBO3304 postoperatively. The BIBO3304 group only received type 1 NPY receptor (Y1 receptor, Y1R) antagonist BIBO3304 postoperatively. Healing outcomes of the rotator cuff were evaluated by histological analysis, synchrotron radiation micro-computed tomography (SR-μCT) scanning, and biomechanical testing at 4 and 8 weeks after surgery. The expression of NPY and its Y1 receptor during the treadmill running were tested by immunofluorescence. In addition, the related signaling pathway of Neuropeptide Y among all groups was detected by immunohistochemistry and western-blot. Results Immunofluorescence results show that early treadmill training could lead to a significant increase in the expression of NPY at the healing site, and Y1R was widely expressed in both normal or injured rotator cuff without statistical difference. At the same time, early treadmill running delayed the healing of rotator cuff, as indicated with unsatisfactory outcomes, including a significantly lower histological score, decreased bone formation and inferior biomechanical properties at postoperative week 4 and 8. Moreover, the use of BIBO3304 could partly alleviate the negative effects of early treadmill running on the healing of rotator cuff and promote the natural healing process of rotator cuff, as evidenced by significant differences observed between the treadmill and treadmill + BIBO3304 groups, as well as observed between the control and BIBO3304 groups. On the other hand, the expressions of Wnt3a and β-catenin in the treadmill group were significantly lower compared with the other groups, while the expression in the BIBO3304 group was the highest, as evaluated by immunohistochemistry and western-blot. Conclusions Early treadmill running increased the expression of NPY at the RC healing site, which might burden the expression of Wnt3a/β-catenin and delay the healing process, inhibition of Y1 receptor with BIBO3304 could promote bone-tendon healing through the Wnt/β-catenin signaling. The translational potential of this article: This is the first study to evaluate the specific role of the NPY-Y1R axis and its underlying mechanism by which early treadmill running delays bone-tendon healing. Further, our study may provide references of precise and individualized exercise-based rehabilitation strategies for TBI healing in clinic. The translational potential of this article This is the first study to evaluate the specific role of the NPY-Y1R axis and its underlying mechanism by which early treadmill running delays bone-tendon healing. Further, our study may provide references of precise and individualized exercise-based rehabilitation strategies for TBI healing in clinic.
Collapse
Affiliation(s)
- Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Zhanwen Wang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| |
Collapse
|
22
|
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine - Review. Stem Cell Rev Rep 2021; 18:56-76. [PMID: 34677817 DOI: 10.1007/s12015-021-10285-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071, Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición - GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
23
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
24
|
Zhang X, Jiang X, Jiang S, Cai X, Yu S, Pei G. Schwann cells promote prevascularization and osteogenesis of tissue-engineered bone via bone marrow mesenchymal stem cell-derived endothelial cells. Stem Cell Res Ther 2021; 12:382. [PMID: 34233721 PMCID: PMC8261922 DOI: 10.1186/s13287-021-02433-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tissue-engineered bone grafts (TEBGs) that undergo vascularization and neurotization evolve into functioning bone tissue. Previously, we verified that implanting sensory nerve tracts into TEBGs promoted osteogenesis. However, the precise mechanisms and interaction between seed cells were not explored. In this study, we hypothesized that neurotization may influence the osteogenesis of TEBGs through vascularization. Methods We cultured rat Schwann cells (SCs), aortic endothelial cells (AECs), and bone marrow-derived mesenchymal stem cells (BM-MSCs) and then obtained BM-MSC-derived induced endothelial cells (IECs) and induced osteoblasts (IOBs). IECs and AECs were cultured in an SC-conditioned medium (SC-CM) to assess proliferation, migration, capillary-like tube formation, and angiogenesis, and the vascular endothelial growth factor (VEGF) levels in the supernatants were detected. We established an indirect coculture model to detect the expression of nestin and VEGF receptors in IECs and tissue inhibitor of metalloproteinase (TIMP)-2 in SCs. Then, SCs, IECs, and IOBs were labeled and loaded into a β-tricalcium phosphate scaffold to induce prevascularization, and the scaffold was implanted into a 6-mm-long defect of rat femurs. Three groups were set up according to the loaded cells: I, SCs, and IECs (coculture for 3 days) plus IOBs; II, IECs (culture for 3 days) plus IOBs; III, IOBs. Nestin and TIMP-2 expression and osteogenesis of TEBGs were evaluated at 12 weeks post-implantation through histological and radiological assessments. Results We found that SC-CM promoted IEC proliferation, migration, capillary-like tube formation, and angiogenesis, but no similar effects were observed for AECs. IECs expressed nestin extensively, while AECs barely expressed nestin, and SC-CM promoted the VEGF secretion of IECs. In the coculture model, SCs promoted nestin and VEGF receptor expression in IECs, and IECs inhibited TIMP-2 expression in SCs. The promotion of prevascularized TEBGs by SCs and IECs in group I augmented new bone formation at 6 and 12 weeks. Nestin expression was higher in group I than in the other groups, while TIMP-2 expression was lower at 12 weeks. Conclusions This study demonstrated that SCs can promote TEBG osteogenesis via IECs and further revealed the related specific characteristics of IECs, providing preliminary cytological evidence for neurotization of TEBGs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02433-3.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Xiaorui Jiang
- Department of Hand and Foot Orthopaedics, Yantai Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shandong, China
| | - Shan Jiang
- Department of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyu Cai
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Shengji Yu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| | - Guoxian Pei
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
25
|
Lorthongpanich C, Charoenwongpaiboon T, Supakun P, Klaewkla M, Kheolamai P, Issaragrisil S. Fisetin Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells via the Inhibition of YAP. Antioxidants (Basel) 2021; 10:antiox10060879. [PMID: 34070903 PMCID: PMC8226865 DOI: 10.3390/antiox10060879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewal and capable of differentiating to various functional cell types, including osteocytes, adipocytes, myoblasts, and chondrocytes. They are, therefore, regarded as a potential source for stem cell therapy. Fisetin is a bioactive flavonoid known as an active antioxidant molecule that has been reported to inhibit cell growth in various cell types. Fisetin was shown to play a role in regulating osteogenic differentiation in animal-derived MSCs; however, its molecular mechanism is not well understood. We, therefore, studied the effect of fisetin on the biological properties of human MSCs derived from chorion tissue and its role in human osteogenesis using MSCs and osteoblast-like cells (SaOs-2) as a model. We found that fisetin inhibited proliferation, migration, and osteogenic differentiation of MSCs as well as human SaOs-2 cells. Fisetin could reduce Yes-associated protein (YAP) activity, which results in downregulation of osteogenic genes and upregulation of fibroblast genes. Further analysis using molecular docking and molecular dynamics simulations suggests that fisetin occupied the hydrophobic TEAD pocket preventing YAP from associating with TEA domain (TEAD). This finding supports the potential application of flavonoids like fisetin as a protein–protein interaction disruptor and also suggesting an implication of fisetin in regulating human osteogenesis.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
- Correspondence:
| | | | - Prapasri Supakun
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| | - Methus Klaewkla
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pakpoom Kheolamai
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani 10120, Thailand;
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.S.); (S.I.)
| |
Collapse
|
26
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
27
|
Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G. Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 2020; 83:102077. [PMID: 32839008 DOI: 10.1016/j.npep.2020.102077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Embryonic bone development is a complicated procedure and modulated by neuro-osteogenic interaction. Vasoactive intestinal peptide (VIP) was first identified as a neural vasodilator and further proved to possess multiple biological functions such as neurotransmitter and immune regulator. However, as a key peptide regulator presented in skeletal nerve fibers, the function of VIP on innervation and early bone development regulation has not fully been uncovered yet. In this study, the chick embryo has been used as an experimental model to address the effect of VIP on embryonic bone development. Our study results confirmed the innervation of peripheral nerve fibers into limb bone tissue, which was revealed by the detection of neurofilament (NF) and class III β-tubulin (TUJ-1) in bone tissue at various developing stages. The VIP mRNA and peptide expression level in bone tissue were also increased upon innervation progress. A chick embryonic chemical sympathectomy model was constructed by exposing chick embryos with neurotoxin 6-OHDA. The 6-OHDA exposure of the early chick embryo caused the reduction of neural crest formation and NF expression. 6-OHDA treatment also inhibited distal limb bone development as well as VIP expression. Furthermore, co-application of VIP with 6-OHDA exposure could rescue the inhibited osteogenesis activity and delayed bone development during embryogenesis. Taken together, these results reveal that VIP played an important role during innervation at early stage of bone development. VIP could restore chemical sympathectomy induced osteogenesis inhibition and bone development impair in chick embryos.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China; School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China
| | - Chaojie Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, PR China.
| |
Collapse
|
28
|
Sahay A, Kale A, Joshi S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides 2020; 83:102075. [PMID: 32778339 DOI: 10.1016/j.npep.2020.102075] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Neurotrophins are a family of functionally and structurally related proteins which play a key role in the survival, development, and function of neurons in both the central and peripheral nervous systems. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) are the family members of neurotrophins. Neurotrophins play a crucial role in influencing the development of the brain and learning and memory processes. Studies demonstrate that they also play crucial role in influencing reproductive and immune systems. Neurotrophins have been shown to influence various processes in the mother, placenta, and fetus during pregnancy. Development and maturation of feto-placental unit and the fetal growth trajectories are influenced by neurotrophins. In addition to neurotrophins, neuropeptides like neuropeptide Y also play a crucial role during various processes of pregnancy and during fetal brain development. Neurotrophins have also been shown to have a cross talk with various angiogenic factors and influence placental development. Alterations in the levels of neurotrophins and neuropeptides lead to placental pathologies resulting in various pregnancy complications like preeclampsia, intrauterine growth restriction and preterm births. Studies in animals have reported low levels of maternal micronutrients like folic acid, vitamin B12 and omega-3 fatty acids influence brain neurotrophins resulting in impaired cognitive functioning in the offspring. Maternal nutrition is also known to affect the expression of neuropeptides. It is essential to understand the role of various neurotrophins across various stages of pregnancy and its relationship with neurodevelopmental outcomes in children. This will lead to early prediction of poor neurodevelopmental outcomes. The present review describes evidence describing the role of neurotrophins in determining pregnancy outcome and altered neurodevelopment in the offspring. The possible mechanism through which maternal nutrition influences neurotrophins and neuropeptides to regulate offspring brain development and function is also discussed.
Collapse
Affiliation(s)
- Akriti Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anvita Kale
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
29
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
30
|
Xie W, Li F, Han Y, Li Z, Xiao J. Neuropeptides are associated with pain threshold and bone microstructure in ovariectomized rats. Neuropeptides 2020; 81:101995. [PMID: 31759680 DOI: 10.1016/j.npep.2019.101995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Postmenopausal osteoporosis (PMO) is a metabolic skeletal disorder with impaired bone density and bone quality in postmenopausal women. The aim of the present study was to investigate the correlation between neuropeptides, bone microstructure and pain threshold in ovariectomized (OVX) rats. METHODS Female rats were randomly divided into the ovariectomized (OVX) group and the sham surgery (SHAM) group. Bone microstructure and immunocytochemistry for substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY) in tibial and DRG were performed. Pain threshold was assessed at post-operative 11 weeks. Pearson correlation coefficients were calculated between neuropeptides, bone microstructure and pain threshold. RESULTS Significant decreases in bone volume fraction (BV/TV) and trabecular number (Tb. N) but significant increases in trabecular spacing (Tb.Sp) were showed in OVX group. Mechanical pain threshold (MPT) in OVX group was significantly decreased. The MOD values for SP, CGRP and VIP of tibial in OVX group were significantly lower, whereas NPY, NPY1R and NPY2R were significantly higher. And SP, CGRP, VIP, NPY and NPY2R of DRG were significantly increased in OVX group, while NPY1R was significantly decreased. Correlation analysis showed that NPY, Y1R and Y2R in bone were negatively correlated with BV/TV. MPT was negatively correlated with NPY and Y2R in DRG, and positively correlated with Y1R in DRG. CONCLUSIONS Our results suggested that SP, CGRP, VIP and NPY were involved in the osteoporotic bone microstructure and mechanical hypersensitivity in OVX rats, indicating the potential to utilize neuropeptides as novel therapeutic targets for PMO.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fan Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yi Han
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
31
|
Chen R, Hao Z, Chen X, Fu Q, Ma Y. Neuropeptide Y enhances proliferation and chondrogenic differentiation of ATDC5 cells. Neuropeptides 2020; 80:102022. [PMID: 31987472 DOI: 10.1016/j.npep.2020.102022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022]
Abstract
In recent years, emerging evidence has illustrated the indispensable role of sympathetic neurotransmitters and their receptors in cartilage mediation. The presence of neuropeptide Y (NPY)-positive sympathetic nerve fibres in cartilage and NPY-secretion function in chondrocytes raises the possibility of NPY directly regulating the function of chondrocytes. Therefore, this study intended to evaluate the effect of NPY and its receptors on the proliferation and chondrogenic differentiation of ATDC5 cells. Results showed NPY, especially at a concentration of 10-10 M, to significantly enhance proliferation of ATDC5 cells. Moreover, NPY effectively facilitated early chondrogenesis and late hypertrophy/mineralisation of ATDC5 cells via Y1 receptor signalling, rather than via Y2 receptor signalling. Taken together, the results help us to understand how NPY and its receptors affect the function of chondrocytes.
Collapse
Affiliation(s)
- Ruixin Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhichao Hao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaodan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Qiang Fu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
32
|
Ulum B, Mammadova A, Özyüncü Ö, Uçkan-Çetinkaya D, Yanık T, Aerts-Kaya F. Neuropeptide Y is involved in the regulation of quiescence of hematopoietic stem cells. Neuropeptides 2020; 80:102029. [PMID: 32127176 DOI: 10.1016/j.npep.2020.102029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/18/2022]
Abstract
Differentiation, self-renewal and quiescence of Hematopoietic stem cells (HSCs) is tightly regulated in order to protect the HSCs from the strain of constant cell division and depletion of the stem cell pool. The neurotransmitter Neuropeptide Y (NPY) is released from sympathetic nerves in the bone marrow and has been shown to indirectly affect HSC function through effects on bone marrow (BM) multipotent Mesenchymal Stromal Cells (MSCs), osteoblasts (OBs) and macrophages. Although the absence of NPY has been shown to be accompanied by severe BM impairment and delayed engraftment of HSCs, the direct effects of NPY on HSCs have never been assessed. Here, we aimed to explore the effect of NPY on the regulation of HSCs. All NPY receptors Y1, Y2, Y4 and Y5 were found to be highly expressed on most HSCs and mature hematopoietic cell subsets. In culture, in particularly expression of the Y1 receptor was shown to decrease in time. Doses of 300 nM NPY suppressed HSC proliferation in cell cultures, as confirmed by an increase of HSCs in G0 phase and an increase in the gene expression levels of FOXO3, DICER1, SMARCA2 and PDK1, which all have been shown to play an important role in the regulation of cell quiescence. These data support the idea that NPY may have a direct effect on the regulation of HSC fate by modulating cell quiescence.
Collapse
Affiliation(s)
- Baris Ulum
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Aynura Mammadova
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Özgür Özyüncü
- Hacettepe University Medical Faculty, Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Tülin Yanık
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Hacettepe University Center for Stem Cell Research, Ankara, Turkey; Hacettepe University Graduate School of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey.
| |
Collapse
|
33
|
Aerts-Kaya F, Ulum B, Mammadova A, Köse S, Aydin G, Korkusuz P, Uçkan-Çetinkaya D. Neurological Regulation of the Bone Marrow Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1212:127-153. [PMID: 31342461 DOI: 10.1007/5584_2019_398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bone marrow (BM) hematopoietic niche is the microenvironment where in the adult hematopoietic stem and progenitor cells (HSPCs) are maintained and regulated. This regulation is tightly controlled through direct cell-cell interactions with mesenchymal stromal stem (MSCs) and reticular cells, adipocytes, osteoblasts and endothelial cells, through binding to extracellular matrix molecules and through signaling by cytokines and hematopoietic growth factors. These interactions provide a healthy environment and secure the maintenance of the HSPC pool, their proliferation, differentiation and migration. Recent studies have shown that innervation of the BM and interactions with the peripheral sympathetic neural system are important for maintenance of the hematopoietic niche, through direct interactions with HSCPs or via interactions with other cells of the HSPC microenvironment. Signaling through adrenergic receptors (ARs), opioid receptors (ORs), endocannabinoid receptors (CRs) on HSPCs and MSCs has been shown to play an important role in HSPC homeostasis and mobilization. In addition, a wide range of neuropeptides and neurotransmitters, such as Neuropeptide Y (NPY), Substance P (SP) and Tachykinins, as well as neurotrophins and neuropoietic growth factors have been shown to be involved in regulation of the hematopoietic niche. Here, a comprehensive overview is given of their role and interactions with important cells in the hematopoietic niche, including HSPCs and MSCs, and their effect on HSPC maintenance, regulation and mobilization.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey. .,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| | - Baris Ulum
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.,Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Aynura Mammadova
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Sevil Köse
- Faculty of Health Sciences, Department of Medical Biology, Atilim University, Ankara, Turkey
| | - Gözde Aydin
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Graduate School of Health Sciences, Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey.,Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
34
|
Gatenholm B, Brittberg M. Neuropeptides: important regulators of joint homeostasis. Knee Surg Sports Traumatol Arthrosc 2019; 27:942-949. [PMID: 30039292 DOI: 10.1007/s00167-018-5074-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE This review explores the mechanisms of joint pain with a special focus on the role of neuropeptides in pain transmission and their potential role in the progression of joint degeneration as seen in osteoarthritis. METHODS A literature search was performed on papers published between January 1990 and September 2017 using the Web of Science Core Collection, MEDLINE and Scopus databases. RESULTS What is seen in the subchondral bone and synovia is mirrored in the central nervous system (CNS). Substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and neuropeptide Y are the major peptides involved both in the generation of pain as well as reducing pain post-joint trauma. The interplay between them and other neuropeptides and cytokines influence how noxious stimuli are transduced, transmitted and modulated for a final pain perception as part of a complex cascade of events. There is a close interaction between the different components in the joint that together cross-talk to adapt to load and catabolic factors during injury and inflammation. CONCLUSION The articular joint should be seen as an organ where local joint pain development and maintenance is influenced by interplay between the local transmitters in the joints as well as their dependence on the CNS. A slow-release cocktail of mixed antibodies targeted against neuropeptides and receptor blockers/stimulators involved in the events of early joint pain or any inflammatory joint disease is a future treatment target. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- Birgitta Gatenholm
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Mats Brittberg
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Hallands Sjukhus, Kungsbacka, Sweden
| |
Collapse
|
35
|
ZHAO XIAOE, YANG ZHENSHAN, GAO ZHEN, GE JUNBANG, WEI QIANG, MA BAOHUA. 6-Bromoindirubin-3’-oxime promotes osteogenic differentiation of canine BMSCs through inhibition of GSK3β activity and activation of the Wnt/β-catenin signaling pathway. ACTA ACUST UNITED AC 2019; 91:e20180459. [PMID: 30916158 DOI: 10.1590/0001-3765201920180459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
|
36
|
Wu J, Liu S, Wang Z, Ma S, Meng H, Hu J. Calcitonin gene-related peptide promotes proliferation and inhibits apoptosis in endothelial progenitor cells via inhibiting MAPK signaling. Proteome Sci 2018; 16:18. [PMID: 30473635 PMCID: PMC6236989 DOI: 10.1186/s12953-018-0146-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) contributes to bone formation by stimulating bone marrow stromal cell (BMSC) proliferation and differentiation. However, the proliferative and apoptotic effects of CGRP on bone marrow-derived endothelial progenitor cells (EPCs) have not been investigated. Methods We tested the effects of CGRP on EPC proliferation and apoptosis by Cell Counting Kit-8, flow cytometry, and studied the effects of CGRP on the expression of proliferation- and apoptosis-related markers in EPCs and the underlying mitogen-activated protein kinase (MAPK) signalling pathway by quantitative polymerase chain reaction and western blotting. Results We detected EPC markers (CD34, CD133 and VEGFR-2) in 7-day cultures and found that CGRP (10− 10–10− 12 M) promoted the proliferation of cultured EPCs, with a peak increase of 30% at 10− 10 M CGRP. CGRP also upregulated the expression of proliferation-associated genes, including cyclin D1 and cyclin E, and increased the percentages of G2/M-phase and S-phase cells after incubation 72 h. CGRP inhibited serum deprivation (SD)-induced apoptosis in EPCs after 24 and 48 h and downregulated the expression of apoptosis-related genes, including caspase-3, caspase-8, caspase-9 and Bax. Phosphorylated (p-)ERK1/2, p-p38 and p-JNK protein levels in EPCs treated with CGRP were significantly lower than those in untreated EPCs. Pre-treatment with the calcitonin receptor-like receptor (CRLR) antagonist CGRP8–37 or a MAPK pathway inhibitor (PD98059, SB203580 or SP600125) completely or partially reversed the pro-proliferative and anti-apoptotic effects and the reduced p-ERK1/2, p-p38 and p-JNK expression induced by CGRP. Conclusion Our results show that CGRP exerts pro-proliferative and anti-apoptotic effects on EPCs and may act by inhibiting MAPK pathways. Electronic supplementary material The online version of this article (10.1186/s12953-018-0146-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianqun Wu
- Department of Spine Surgery, Huadu District People's Hospital, Guangzhou, Guangzhou, 510800 Guangdong Province China
| | - Song Liu
- 2Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, 510150 Guangdong Province China.,3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| | - Zhao Wang
- 2Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou City, 510150 Guangdong Province China
| | - Shenghui Ma
- 3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| | - Huan Meng
- 3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| | - Jijie Hu
- 3Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515 Guangdong Province China
| |
Collapse
|
37
|
Businaro R, Scaccia E, Bordin A, Pagano F, Corsi M, Siciliano C, Capoano R, Procaccini E, Salvati B, Petrozza V, Totta P, Vietri MT, Frati G, De Falco E. Platelet Lysate-Derived Neuropeptide y Influences Migration and Angiogenesis of Human Adipose Tissue-Derived Stromal Cells. Sci Rep 2018; 8:14365. [PMID: 30254326 PMCID: PMC6156505 DOI: 10.1038/s41598-018-32623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y (NPY), a powerful neurotransmitter of the central nervous system, is a key regulator of angiogenesis and biology of adipose depots. Intriguingly, its peripheral vascular and angiogenic powerful activity is strictly associated to platelets, which are source of clinical hemoderivates, such as platelet lysate (PL), routinely employed in several clinical applications as wound healing, and to preserve ex vivo the progenitor properties of the adipose stromal cells pool. So far, the presence of NPY in PL and its biological effects on the adipose stromal cell fraction (ASCs) have never been investigated. Here, we aimed to identify endogenous sources of NPY such as PL-based preparations and to investigate which biological properties PL-derived NPY is able to exert on ASCs. The results show that PL contains a high amount of NPY, which is in part also excreted by ASCs when stimulated with PL. The protein levels of the three main NPY subtype receptors (Y1, Y2, Y5) are unaltered by stimulation of ASCs with PL, but their inhibition through selective pharmacological antagonists, considerably enhances migration, and a parallel reduction of angiogenic features of ASCs including decrease in VEGF mRNA and intracellular calcium levels, both downstream targets of NPY. The expression of VEGF and NPY is enhanced within the sites of neovascularisation of difficult wounds in patients after treatment with leuco-platelet concentrates. Our data highlight the presence of NPY in PL preparations and its peripheral effects on adipose progenitors.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Eleonora Scaccia
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Antonella Bordin
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Francesca Pagano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Mariangela Corsi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Camilla Siciliano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Raffaele Capoano
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Eugenio Procaccini
- Breast Unit, A.O. U. Università della Campania Luigi Vanvitelli, piazza Luigi Miraglia, 280138, Naples, Italy
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | | | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giacomo Frati
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli, (IS), Italy
| | - Elena De Falco
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
38
|
DeLaney K, Buchberger AR, Atkinson L, Gründer S, Mousley A, Li L. New techniques, applications and perspectives in neuropeptide research. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151167. [PMID: 29439063 DOI: 10.1242/jeb.151167] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptides are one of the most diverse classes of signaling molecules and have attracted great interest over the years owing to their roles in regulation of a wide range of physiological processes. However, there are unique challenges associated with neuropeptide studies stemming from the highly variable molecular sizes of the peptides, low in vivo concentrations, high degree of structural diversity and large number of isoforms. As a result, much effort has been focused on developing new techniques for studying neuropeptides, as well as novel applications directed towards learning more about these endogenous peptides. The areas of importance for neuropeptide studies include structure, localization within tissues, interaction with their receptors, including ion channels, and physiological function. Here, we discuss these aspects and the associated techniques, focusing on technologies that have demonstrated potential in advancing the field in recent years. Most identification and structural information has been gained by mass spectrometry, either alone or with confirmations from other techniques, such as nuclear magnetic resonance spectroscopy and other spectroscopic tools. While mass spectrometry and bioinformatic tools have proven to be the most powerful for large-scale analyses, they still rely heavily on complementary methods for confirmation. Localization within tissues, for example, can be probed by mass spectrometry imaging, immunohistochemistry and radioimmunoassays. Functional information has been gained primarily from behavioral studies coupled with tissue-specific assays, electrophysiology, mass spectrometry and optogenetic tools. Concerning the receptors for neuropeptides, the discovery of ion channels that are directly gated by neuropeptides opens up the possibility of developing a new generation of tools for neuroscience, which could be used to monitor neuropeptide release or to specifically change the membrane potential of neurons. It is expected that future neuropeptide research will involve the integration of complementary bioanalytical technologies and functional assays.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Amanda R Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Louise Atkinson
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Angela Mousley
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA .,School of Pharmacy, University of Wisconsin-Madison, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
39
|
Seldeen KL, Halley PG, Volmar CH, Rodríguez MA, Hernandez M, Pang M, Carlsson SK, Suva LJ, Wahlestedt C, Troen BR, Brothers SP. Neuropeptide Y Y2 antagonist treated ovariectomized mice exhibit greater bone mineral density. Neuropeptides 2018; 67:45-55. [PMID: 29129406 PMCID: PMC5805636 DOI: 10.1016/j.npep.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Abstract
Osteoporosis, a disease characterized by progressive bone loss and increased risk of fracture, often results from menopausal loss of estrogen in women. Neuropeptide Y has been shown to negatively regulate bone formation, with amygdala specific deletion of the Y2 receptor resulting in increased bone mass in mice. In this study, ovariectomized (OVX) mice were injected once daily with JNJ-31020028, a brain penetrant Y2 receptor small molecule antagonist to determine the effects on bone formation. Antagonist treated mice had reduced weight and showed increased whole-body bone mineral density compared to vehicle-injected mice. Micro computerized tomography (micro-CT) demonstrated increased vertebral trabecular bone volume, connectivity density and trabecular thickness. Femoral micro-CT analysis revealed increased bone volume within trabecular regions and greater trabecular number, without significant difference in other parameters or within cortical regions. A decrease was seen in serum P1NP, a measure used to confirm positive treatment outcomes in bisphosphonate treated patients. C-terminal telopeptide 1 (CTX-1), a blood biomarker of bone resorption, was decreased in treated animals. The higher bone mineral density observed following Y2 antagonist treatment, as determined by whole-body DEXA scanning, is indicative of either enhanced mineralization or reduced bone loss. Additionally, our findings that ex vivo treatment of bone marrow cells with the Y2 antagonist did not affect osteoblast and osteoclast formation suggests the inhibitor is not affecting these cells directly, and suggests a central role for compound action in this system. Our results support the involvement of Y2R signalling in bone metabolism and give credence to the hypothesis that selective pharmacological manipulation of Y2R may provide anabolic benefits for treating osteoporosis.
Collapse
Affiliation(s)
- K L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - P G Halley
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C H Volmar
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - M A Rodríguez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Hernandez
- Bruce W. Carter VA Geriatric Research Education and Clinical Center (GRECC), Miami, FL, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | - M Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S K Carlsson
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - L J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, University of Arkansas Medical School, Little Rock, AR, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - B R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - S P Brothers
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
40
|
Liu M, Liu H, Liang F, Song XQ, Hu PA. Neuropeptide Y promotes adipogenic differentiation in primary cultured human adipose-derived stem cells. Endocr J 2018; 65:43-52. [PMID: 28954935 DOI: 10.1507/endocrj.ej17-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the release of NPY has coordinated and integrated effects on energy metabolism in different tissues, such as adipocyte tissue, resulting in increased energy storage and decreased energy expenditure. Whether NPY has role in the molecular mechanism of human adipocyte tissue remains unclear. We established the model of human adipose derived stem cells (hADSCs) from human adipose tissue and differentiated it into adipocytes in the presence of NPY at different concentrations (10-15-10-6 mmol/L). We then assessed hADSCs proliferation and differentiation by quantifying lipid accumulation and examining the expression levels of related adipocyte markers after differentiation. Furthermore, the specific markers of white adipocyte tissue (WAT) in hADSCs were also analyzed. The results showed that low doses of NPY stimulated hADSCs proliferation (p < 0.05), while high doses of NPY inhibited hADSCs proliferation (p < 0.05). NPY significantly promoted lipid accumulation and increased the size of lipid droplets during human adipogenic differentiation; the levels of adipocyte markers PPAR-γ and C/EBPα were also increased. At the same time, NPY also increased the levels of WAT markers Cidec and RIP140 after adipocyte differentiation. The results suggested high dose NPY inhibits the proliferation of hADSCs while promotes adipocyte differentiation and increases the expression of WAT markers. This may be the reason why increased levels of NPY can lead to a rise in body weight.
Collapse
Affiliation(s)
- Min Liu
- Department of Clinical Nutrition, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Hong Liu
- Department of Clinical Nutrition, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Fang Liang
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Xiao-Qin Song
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Ping-An Hu
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
41
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
42
|
Wu J, Liu S, Meng H, Qu T, Fu S, Wang Z, Yang J, Jin D, Yu B. Neuropeptide Y enhances proliferation and prevents apoptosis in rat bone marrow stromal cells in association with activation of the Wnt/β-catenin pathway in vitro. Stem Cell Res 2017; 21:74-84. [PMID: 28411439 DOI: 10.1016/j.scr.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 01/03/2023] Open
Abstract
Neuropeptide Y (NPY) exhibits a critical but poorly understood regulatory signaling function and has been shown to promote proliferation, vascularization and migration in several types of cells and tissues. However, little is known about the specific role of NPY in the proliferation and apoptosis of bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells, BMSCs), which contain a subpopulation of multipotent skeletal stem cells. Based on BrdU incorporation tests, Cell Counting Kit-8, flow cytometry, quantitative polymerase chain reaction and western blotting, we showed that NPY significantly promoted the proliferation of BMSCs in a concentration-dependent manner, with a maximal effect observed at a concentration of 10-10M for pro-proliferative and 10-12M for anti-apoptotic activities. Furthermore, NPY significantly increased the percentage of cells in S and G2/M phases. In addition, NPY exhibited a protective effect after 24h of serum starvation as illustrated by a reduction in the apoptosis rate, degree of nuclear condensation, and expression of apoptosis markers, including caspase-3, caspase-9 and Bax mRNA expression. NPY also increased the mRNA and protein expression levels of canonical Wnt signaling pathway proteins, including β-catenin and c-myc, during the induced proliferative and anti-apoptotic processes. However, the proliferative and anti-apoptotic activities of NPY were partially blocked by both PD160170 (1μM) and DKK1 (0.2μg/mL). These compounds also blocked the mRNA and protein expression of β-catenin, p-GSK-3β and c-myc. Therefore, the results of the present study demonstrated that NPY exerts a proliferative and protective effect on BMSCs in a dose- and time-dependent manner in vitro, and importantly, these effects may be mediated via its Y1 receptor and involved in activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Jianqun Wu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Song Liu
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Huan Meng
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Tianyu Qu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Su Fu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Zhao Wang
- Department of Orthopedics, The Third Hospital of Guangzhou Medical University, Guangzhou City, Guangdong Province 510515, China; Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jianguo Yang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Orthopaedics, The First Hospital Huhhot, Huhhot, Inner Mongolia 010020, China
| | - Dan Jin
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
43
|
Jerić M, Vukojević K, Vuica A, Filipović N. Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion. Neuropeptides 2017; 62:57-64. [PMID: 27836326 DOI: 10.1016/j.npep.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) influences the trigeminal nerve function by changing the pain response and transduction of the orofacial sensory pathways. It affects the inflammatory response via neuropeptide Y (NPY) and vascular endothelial growth factor (VEGF), which could potentially have a relevant role in the pathophysiology of diabetic neuropathy. The aim was to investigate expression of VEGF and NPY in subpopulations of trigeminal ganglion (TG) neurons in rat models of early DM1 and DM2. METHODS DM1 model was induced by an intraperitoneal (i.p.) injection of streptozotocin (STZ) (55mg/kg). DM2 rats were fed with a high fat diet (HFD) for two weeks and then received 35mg/kg of STZ i.p. Two weeks and 2months after the STZ-diabetes induction, rats were sacrificed and TG was immunohistochemically analyzed for detection of VEGF and NPY expression, and also double immunofluorescence labeling with isolectin (IB4) was completed. RESULTS An increased percentage of NPY+ neurons was observed 2weeks after DM1 and 2months post DM2 induction. NPY immunoreactivity was restricted to IB4-negative small-diameter and IB4+ neurons. Two weeks post induction, DM1 rats showed an increased percentage of VEGF/IB4- large neurons and DM2 rats showed an increased percentage of VEGF/IB4+ neurons. Two months after DM induction, the DM1 group showed a reduced percentage of VEGF/IB4- small neurons. CONCLUSION The observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The results contribute to the understanding of the basic pathophysiology of trigeminal diabetic neuropathy.
Collapse
Affiliation(s)
- Milka Jerić
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia
| | - Katarina Vukojević
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia; University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, Croatia
| | - Ana Vuica
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia
| | - Natalija Filipović
- University of Split, School of Medicine, Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, Croatia.
| |
Collapse
|
44
|
Yang J, Nie J, Fu S, Liu S, Wu J, Cui L, Zhang Y, Yu B. The fast track to canonical Wnt signaling in MC3T3-E1 cells protected by substance P against serum deprivation-induced apoptosis. Cell Biol Int 2016; 41:71-78. [PMID: 27592589 DOI: 10.1002/cbin.10676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Abstract
The canonical Wnt pathway is vital to bone physiology by increasing bone mass through elevated osteoblast survival. Although investigated extensively in stem cells, its role in osteoblastic MC3T3-E1 cells has not been completely determined. To explore how this pathway is regulated by different conditions, we assessed the anti-apoptotic effects of substance P on the canonical Wnt pathway in MC3T3-E1 cells by treating cells with serum deprivation or serum starving with "substance P," a neuropeptide demonstrated to promote bone growth and stimulate Wnt signaling. The results showed that serum deprivation both induced apoptosis and activated Wnt signal transduction while substance P further stimulated the Wnt pathway via the NK-1 receptor but protected the cells from apoptotic death. Fast-tracking of Wnt signaling by substance P was also noted. These results indicate that nutritional deprivation and substance P synergistically activated the canonical Wnt pathway, a finding that helps to reveal the role of Wnt signaling in bone physiology affected by nutritional deprivation and neuropeptide substance P.
Collapse
Affiliation(s)
- Jianguo Yang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.,Department of Orthopaedics, Huhhot First Hospital, Hohhot, Inner Mongolia, 010020, China
| | - Jiping Nie
- Department of Hand Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010030, China
| | - Su Fu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Song Liu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jianqun Wu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Liang Cui
- Department of Orthopaedics, Huhhot First Hospital, Hohhot, Inner Mongolia, 010020, China
| | - Yongtao Zhang
- Department of Orthopaedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, 056002, China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
45
|
Wang FS, Lian WS, Weng WT, Sun YC, Ke HJ, Chen YS, Ko JY. Neuropeptide Y mediates glucocorticoid-induced osteoporosis and marrow adiposity in mice. Osteoporos Int 2016; 27:2777-2789. [PMID: 27080706 DOI: 10.1007/s00198-016-3598-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
UNLABELLED Increased neuropeptide Y (NPY) expression occurred in the glucocorticoid-induced osteoporotic skeleton. NPY knockout mice exhibited a minor response to the glucocorticoid-mediated exacerbation of bone accretion and fatty marrow pathogenesis. NPY deletion restored SITR1 signaling and enhanced PPARγ ubiquitination of bone tissue, an alternative strategy for ameliorating glucocorticoid-induced skeletal deterioration. INTRODUCTION Glucocorticoid excess is observed to worsen the pathogenesis of osteoporosis and fatty marrow. This study was undertaken to investigate the contribution of neuropeptide Y (NPY) to glucocorticoid-induced bone loss and marrow adiposity. METHODS NPY knockout and wild-type mice were administered methylprednisolone for four consecutive weeks. Bone mineral density, microarchitecture, and calcein-labeled mineral acquisition were quantified by μCT, dual energy X-ray absorptiometry, and histomorphometry. Expression of osteogenic and adipogenic markers and acetylation states of PPARγ were detected by RT-quantitative PCR, immunoprecipitation, and immunoblotting. RESULTS High NPY levels were associated with glucocorticoid-induced trabecular bone deterioration and marrow fat accumulation. Mice lacking NPY had high bone mass concomitant with spacious trabecular and cortical bone microstructure. NPY deletion shielded skeletal tissues from the glucocorticoid-induced impediment of bone mass, trabecular morphometric characteristics, mineral accretion activity, and fatty marrow development. Ex vivo, NPY deficiency sustained osteogenic differentiation capacity and curtailed the glucocorticoid-mediated escalation of adipocyte formation reactions of primary bone-marrow mesenchymal cells. NPY deletion appeared to modulate Y1 and Y2 receptors, sirtuin 1, ERK, and p38 signaling pathways, an effect that facilitated hypoacetylation and ubiquitination of adipogenic transcription factor PPARγ in the skeletal tissues exposed to glucocorticoid stress. CONCLUSIONS NPY mediates the glucocorticoid-induced disturbance of mineral accretion and marrow adipogenesis through post-translational modification of PPARγ. This study brings a new molecular insight into the disintegration of adipogenic and osteogenic activities within glucocorticoid-mediated osteoporotic skeletons. Control of NPY is an alternative strategy to ameliorate glucocorticoid-induced bone destruction and fatty marrow.
Collapse
Affiliation(s)
- F-S Wang
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - W-S Lian
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - W-T Weng
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y-C Sun
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - H-J Ke
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Y-S Chen
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohisung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - J-Y Ko
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, 123, Ta-Pei Road, Niao-Sung District, Kaohsiung, 83303, Taiwan.
| |
Collapse
|