1
|
Roy SC, Sapkota S, Pasula MB, Briski KP. In Vivo Glucose Transporter-2 Regulation of Dorsomedial Versus Ventrolateral VMN Astrocyte Metabolic Sensor and Glycogen Metabolic Enzyme Gene Expression in Female Rat. Neurochem Res 2024; 49:3367-3382. [PMID: 39306597 DOI: 10.1007/s11064-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Astrocyte glycogenolysis shapes ventromedial hypothalamic nucleus (VMN) regulation of glucostasis in vivo. Glucose transporter-2 (GLUT2), a plasma membrane glucose sensor, controls hypothalamic primary astrocyte culture glycogen metabolism in vitro. In vivo gene silencing tools and single-cell laser-catapult-microdissection/multiplex qPCR techniques were used here to examine whether GLUT2 governs dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN astrocyte metabolic sensor and glycogen metabolic enzyme gene profiles. GLUT2 gene knockdown diminished astrocyte GLUT2 mRNA in both VMN divisions. Hypoglycemia caused GLUT2 siRNA-reversible up-regulation of this gene profile in the VMNdm, but down-regulated VMNvl astrocyte GLUT2 transcription. GLUT2 augmented baseline VMNdm and VMNvl astrocyte glucokinase (GCK) gene expression, but increased (VMNdm) or reduced (VMNvl) GCK transcription during hypoglycemia. GLUT2 imposed opposite control, namely stimulation versus inhibition of VMNdm or VMNvl astrocyte 5'-AMP-activated protein kinase-alpha 1 and -alpha 2 gene expression, respectively. GLUT2 stimulated astrocyte glycogen synthase (GS) gene expression in each VMN division. GLUT2 inhibited transcription of the AMP-sensitive glycogen phosphorylase (GP) isoform GP-brain type (GPbb) in each site, yet diminished (VMNdm) or augmented (VMNvl) astrocyte GP-muscle type (GPmm) mRNA. GLUT2 enhanced VMNdm and VMNvl glycogen accumulation during euglycemia, and curbed hypoglycemia-associated VMNdm glycogen depletion. Results show that VMN astrocytes exhibit opposite, division-specific GLUT2 transcriptional responsiveness to hypoglycemia. Data document divergent GLUT2 control of GCK, AMPK catalytic subunit, and GPmm gene profiles in VMNdm versus VMNvl astrocytes. Ongoing studies seek to determine how differential GLUT2 regulation of glucose and energy sensor function and glycogenolysis in each VMN location may affect local neuron responses to hypoglycemia.
Collapse
Affiliation(s)
- Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
- UL System Foundation and Willis-Knighton Health Systems Professorship in Toxicology, College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
2
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
3
|
Sapkota S, Roy SC, Shrestha R, Briski KP. Steroidogenic Factor-1 Regulation of Dorsomedial Ventromedial Hypothalamic Nucleus Ghrh Neuron Transmitter Marker and Estrogen Receptor Gene Expression in Male Rat. ASN Neuro 2024; 16:2368382. [PMID: 39024550 PMCID: PMC11262038 DOI: 10.1080/17590914.2024.2368382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ventromedial hypothalamic nucleus (VMN) growth hormone-releasing hormone (Ghrh) neurotransmission shapes counterregulatory hormone secretion. Dorsomedial VMN Ghrh neurons express the metabolic-sensitive transcription factor steroidogenic factor-1/NR5A1 (SF-1). In vivo SF-1 gene knockdown tools were used here to address the premise that in male rats, SF-1 may regulate basal and/or hypoglycemic patterns of Ghrh, co-transmitter biosynthetic enzyme, and estrogen receptor (ER) gene expression in these neurons. Single-cell multiplex qPCR analyses showed that SF-1 regulates basal profiles of mRNAs that encode Ghrh and protein markers for neurochemicals that suppress (γ-aminobutyric acid) or enhance (nitric oxide; glutamate) counterregulation. SF-1 siRNA pretreatment respectively exacerbated or blunted hypoglycemia-associated inhibition of glutamate decarboxylase67 (GAD67/GAD1) and -65 (GAD65/GAD2) transcripts. Hypoglycemia augmented or reduced nitric oxide synthase and glutaminase mRNAs, responses that were attenuated by SF-1 gene silencing. Ghrh and Ghrh receptor transcripts were correspondingly refractory to or increased by hypoglycemia, yet SF-1 knockdown decreased both gene profiles. Hypoglycemic inhibition of ER-alpha and G protein-coupled-ER gene expression was amplified by SF-1 siRNA pretreatment, whereas as ER-beta mRNA was amplified. SF-1 knockdown decreased (corticosterone) or elevated [glucagon, growth hormone (GH)] basal counterregulatory hormone profiles, but amplified hypoglycemic hypercorticosteronemia and -glucagonemia or prevented elevated GH release. Outcomes document SF-1 control of VMN Ghrh neuron counterregulatory neurotransmitter and ER gene transcription. SF-1 likely regulates Ghrh nerve cell receptivity to estradiol and release of distinctive neurochemicals during glucose homeostasis and systemic imbalance. VMN Ghrh neurons emerge as a likely substrate for SF-1 control of glucose counterregulation in the male rat.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Rami Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
4
|
Wang W, Wang Y, Liu Y, Cao G, Di R, Wang J, Chu M. Polymorphism and expression of GLUD1 in relation to reproductive performance in Jining Grey goats. Arch Anim Breed 2023; 66:411-419. [PMID: 38205377 PMCID: PMC10776882 DOI: 10.5194/aab-66-411-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/06/2023] [Indexed: 01/12/2024] Open
Abstract
Understanding the molecular mechanism of mammalian reproduction (puberty and prolificacy) will play a part in improving animal reproductive performance. GLUD1 (glutamate dehydrogenase 1) is important for mammalian reproduction, as shown in previous studies; however, its roles in puberty and prolificacy have rarely been reported. In this study, we designed seven pairs of primers (P1 to P7) for cloning and sequencing genomic DNA of Jining Grey goats and Liaoning Cashmere goats. Primer 8 (P8) was designed to detect single nucleotide polymorphism (SNP) of the GLUD1 in both sexually precocious and high-fecundity breeds (Jining Grey, Nanjiang Brown and Matou goats) and sexually late-maturing and low-fecundity breeds (Liaoning Cashmere, Inner Mongolia Cashmere and Taihang goats) by PCR-RFLP (restriction fragment length polymorphism). The real-time quantitative polymerase chain reaction (RT-qPCR) technique was used to detect the expression of GLUD1 in a variety of tissues. The results showed that the A197C mutation was only found in the amplification product of P6. For this SNP locus, only two genotypes (AA and AC) were detected in Nanjiang Brown goats, while three genotypes (AA, AC and CC) were detected in the other five breeds. In Jining Grey goats, the frequency of genotypes AA, AC and CC was 0.69, 0.26 and 0.05, respectively. In Jining Grey goats, AA genotype had 0.54 (P < 0.05 ) and 0.3 (P < 0.05 ) more kids than the CC and AC genotype, respectively, and no significant difference (P > 0.05 ) was found in kidding number between the AC and CC genotype. GLUD1 was expressed in five tissues of different developmental stages. The expression level of GLUD1 in the hypothalamus was higher than that in the other four tissues except during puberty of Liaoning Cashmere goats. In puberty in goats, GLUD1 expression was significantly higher in ovaries than that in the juvenile period (P < 0.01 ). RT-qPCR results showed that the expression of GLUD1 in ovaries may relate to the puberty of goats. The present study preliminarily indicated that there might be an association between the 197 locus of GLUD1 and sexual precocity in goats, and allele A of GLUD1 was a potential DNA marker for improving kidding number in Jining Grey goats.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongjuan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guiling Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Mahmood ASMH, Roy SC, Leprince J, Briski KP. Sex-dependent endozepinergic regulation of ventromedial hypothalamic nucleus glucose counter-regulatory neuron aromatase protein expression in the adult rat. J Chem Neuroanat 2023; 132:102323. [PMID: 37543285 PMCID: PMC10528386 DOI: 10.1016/j.jchemneu.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The hypothalamic brain cell types that produce estradiol from testosterone remain unclear. Aromatase inhibition affects ventromedial hypothalamic nucleus (VMN) glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) transmission during insulin (INS)-induced hypoglycemia (IIH). Pure GABA and NO nerve cell samples acquired by laser-catapult-microdissection from consecutive rostro-caudal segments of the VMN were analyzed by Western blot to investigate whether regional subpopulations of each cell type contain machinery for neuro-estradiol synthesis. Astrocyte endozepinergic signaling governs brain steroidogenesis. Pharmacological tools were used here to determine if the glio-peptide octadecaneuropeptide (ODN) controls aromatase expression in GABA and NO neurons during eu- and/or hypoglycemia. Intracerebroventricular administration of the ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) decreased (male) or enhanced (female) VMN GABAergic neuron aromatase expression, but increased or reduced this profile in nitrergic neurons in a region-specific manner in each sex. IIH suppressed aromatase levels in GABA neurons located in the middle segment of the male VMN or distributed throughout this nucleus in the female. This inhibitory response was altered by the ODN isoactive surrogate octapeptide (OP) in female, but was refractory to OP in male. NO neuron aromatase protein in hypoglycemic male (middle and caudal VMN) and female (rostral and caudal VMN) rats, but was normalized in OP- plus INS-treated rats of both sexes. Results provide novel evidence that VMN glucose-regulatory neurons may produce neuro-estradiol, and that the astrocyte endozepine transmitter ODN may impose sex-specific control of baseline and/or hypoglycemic patterns of aromatase expression in distinct subsets of nitrergic and GABAergic neurons in this neural structure.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jérôme Leprince
- Univ Rouen Normandie, Inserm, NorDic UMR 1239, PRIMACEN, Rouen, France
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
6
|
Bheemanapally K, Briski KP. Differential G Protein-Coupled Estrogen Receptor-1 Regulation of Counter-Regulatory Transmitter Marker and 5'-AMP-Activated Protein Kinase Expression in Ventrolateral versus Dorsomedial Ventromedial Hypothalamic Nucleus. Neuroendocrinology 2023; 114:25-41. [PMID: 37699381 PMCID: PMC10843453 DOI: 10.1159/000533627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION The ventromedial hypothalamic nucleus (VMN) is an estrogen receptor (ER)-rich structure that regulates glucostasis. The role of nuclear but not membrane G protein-coupled ER-1 (GPER) in that function has been studied. METHODS Gene silencing and laser-catapult microdissection/immunoblot tools were used to examine whether GPER regulates transmitter and energy sensor function in dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN counter-regulatory nitrergic and γ-Aminobutyric acid (GABA) neurons. RESULTS Intra-VMN GPER siRNA administration to euglycemic animals did not affect VMNdm or -vl nitrergic neuron nitric oxide synthase (nNOS), but upregulated (VMNdm) or lacked influence on (VMNvl) GABA nerve cell glutamate decarboxylase65/67 (GAD) protein. Insulin-induced hypoglycemia (IIH) caused GPER knockdown-reversible augmentation of nNOS, 5'-AMP-activated protein kinase (AMPK), and phospho-AMPK proteins in nitrergic neurons in both divisions. IIH had dissimilar effects on VMNvl (unchanged) versus VMNdm (increased) GABAergic neuron GAD levels, yet GPER knockdown affected these profiles. GPER siRNA prevented hypoglycemic upregulation of VMNvl and -dm GABA neuron AMPK without altering pAMPK expression. CONCLUSIONS Outcomes infer that GPER exerts differential control of VMNdm versus -vl GABA transmission during glucostasis and is required for hypoglycemic upregulated nitrergic (VMNdm and -vl) and GABA (VMNdm) signaling. Glycogen metabolism is reported to regulate VMN nNOS and GAD proteins. Data show that GPER limits VMNvl glycogen phosphorylase (GP) protein expression and glycogen buildup during euglycemia but mediates hypoglycemic augmentation of VMNvl GP protein and glycogen content; VMNdm glycogen mass is refractory to GPER control. GPER regulation of VMNvl glycogen metabolism infers that this receptor may govern local counter-regulatory transmission in part by astrocyte metabolic coupling.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
7
|
Napit PR, Ali MH, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic hindbrain lactate regulation of ventromedial hypothalamic nucleus glucoregulatory neuron 5'-AMP-activated protein kinase activity and transmitter marker protein expression. Neuropeptides 2023; 99:102324. [PMID: 36791640 PMCID: PMC10175150 DOI: 10.1016/j.npep.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
8
|
Fessel J. Cure of Alzheimer's Dementia in Many Patients by Using Intranasal Insulin to Augment an Inadequate Counter-Reaction, Edaravone to Scavenge ROS, and 1 or 2 Other Drugs to Address Affected Brain Cells. J Clin Med 2023; 12:jcm12093151. [PMID: 37176592 PMCID: PMC10178959 DOI: 10.3390/jcm12093151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The goal of treatment for Alzheimer's dementia (AD) is the restoration of normal cognition. No drug regimen has ever achieved this. This article suggests that curing AD may be achieved by combination therapy as follows. First, with intranasal insulin to augment the body's natural counter-reaction to the changes in brain cell-types that produced the dementia. Second, with edaravone to decrease free radicals, which are increased and causal in AD. Third, as described elsewhere, with one or two drugs from among pioglitazone, fluoxetine, and lithium, which address the brain cell-types whose changed functions cause the dementia. Insulin restores cerebral glucose, which is the main nutrient for brain neurons whose depletion is responsible for the dementia; and edaravone decreases ROS, which are intrinsic causes of neuropathology in AD. This combination of drugs is a potential cure for many patients with AD, and should be tested in a clinical trial.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California San Francisco, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
9
|
Effects of Ventromedial Hypothalamic Nucleus (VMN) Aromatase Gene Knockdown on VMN Glycogen Metabolism and Glucoregulatory Neurotransmission. BIOLOGY 2023; 12:biology12020242. [PMID: 36829519 PMCID: PMC9953379 DOI: 10.3390/biology12020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The enzyme aromatase is expressed at high levels in the ventromedial hypothalamic nucleus (VMN), a principal component of the brain gluco-regulatory network. Current research utilized selective gene knockdown tools to investigate the premise that VMN neuroestradiol controls glucostasis. Intra-VMN aromatase siRNA administration decreased baseline aromatase protein expression and tissue estradiol concentrations and either reversed or attenuated the hypoglycemic regulation of these profiles in a VMN segment-specific manner. Aromatase gene repression down-regulated protein biomarkers for gluco-stimulatory (nitric oxide; NO) and -inhibitory (gamma-aminobutyric acid; GABA) neurochemical transmitters. Insulin-induced hypoglycemia (IIH) up- or down-regulated neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD), respectively, throughout the VMN. Interestingly, IIH caused divergent changes in tissue aromatase and estradiol levels in rostral (diminished) versus middle and caudal (elevated) VMN. Aromatase knockdown prevented hypoglycemic nNOS augmentation in VMN middle and caudal segments, but abolished the GAD inhibitory response to IIH throughout this nucleus. VMN nitrergic and GABAergic neurons monitor stimulus-specific glycogen breakdown. Here, glycogen synthase (GS) and phosphorylase brain- (GPbb; AMP-sensitive) and muscle- (GPmm; noradrenergic -responsive) type isoform responses to aromatase siRNA were evaluated. Aromatase repression reduced GPbb and GPmm content in euglycemic controls and prevented hypoglycemic regulation of GPmm but not GPbb expression while reversing glycogen accumulation. Aromatase siRNA elevated baseline glucagon and corticosterone secretion and abolished hypoglycemic hyperglucagonemia and hypercorticosteronemia. Outcomes document the involvement of VMN neuroestradiol signaling in brain control of glucose homeostasis. Aromatase regulation of VMN gluco-regulatory signaling of hypoglycemia-associated energy imbalance may entail, in part, control of GP variant-mediated glycogen disassembly.
Collapse
|
10
|
Briski KP, Napit PR, Alhamyani A, Leprince J, Mahmood AH. Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. ASN Neuro 2023; 15:17590914231167230. [PMID: 37194319 PMCID: PMC10196551 DOI: 10.1177/17590914231167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.
Collapse
Affiliation(s)
- Karen P. Briski
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Jérôme Leprince
- Neuronal and Neuroendocrine Differentiation
and Communication Laboratory, Normandy University, INSERM U1239, PRIMACEN, Rouen,
France
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| |
Collapse
|
11
|
Roy SC, Napit PR, Pasula M, Bheemanapally K, Briski KP. G protein-coupled lactate receptor GPR81 control of ventrolateral ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and 5'-AMP-activated protein kinase expression. Am J Physiol Regul Integr Comp Physiol 2023; 324:R20-R34. [PMID: 36409024 PMCID: PMC9762965 DOI: 10.1152/ajpregu.00100.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Astrocytes store glycogen as energy and promote neurometabolic stability through supply of oxidizable l-lactate. Whether lactate regulates ventromedial hypothalamic nucleus (VMN) glucostatic function as a metabolic volume transmitter is unknown. Current research investigated whether G protein-coupled lactate receptor GPR81 controls astrocyte glycogen metabolism and glucose-regulatory neurotransmission in the ventrolateral VMN (VMNvl), where glucose-regulatory neurons reside. Female rats were pretreated by intra-VMN GPR81 or scramble siRNA infusion before insulin or vehicle injection. VMNvl cell or tissue samples were acquired by laser-catapult- or micropunch microdissection for Western blot protein or uHPLC-electrospray ionization-mass spectrometric glycogen analyses. Data show that GPR81 regulates eu- and/or hypoglycemic patterns of VMNvl astrocyte glycogen metabolic enzyme and 5'-AMP-activated protein kinase (AMPK) protein expression according to VMNvl segment. GPR81 stimulates baseline rostral and caudal VMNvl glycogen accumulation but mediates glycogen breakdown in the former site during hypoglycemia. During euglycemia, GPR81 suppresses the transmitter marker neuronal nitric oxide synthase (nNOS) in rostral and caudal VMNvl nitrergic neurons, but stimulates (rostral VMNvl) or inhibits (caudal VMNvl) GABAergic neuron glutamate decarboxylase65/67 (GAD)protein. During hypoglycemia, GPR81 regulates AMPK activation in nitrergic and GABAergic neurons located in the rostral, but not caudal VMNvl. VMN GPR81 knockdown amplified hypoglycemic hypercorticosteronemia, but not hyperglucagonemia. Results provide novel evidence that VMNvl astrocyte and glucose-regulatory neurons express GPR81 protein. Data identify neuroanatomical subpopulations of VMNvl astrocytes and glucose-regulatory neurons that exhibit differential reactivity to GPR81 input. Heterogeneous GPR81 effects during eu- versus hypoglycemia infer that energy state may affect cellular sensitivity to or postreceptor processing of lactate transmitter signaling.
Collapse
Affiliation(s)
- Sagor Chandra Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - MadhuBabu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
12
|
Lipid biosynthesis enzyme Agpat5 in AgRP-neurons is required for insulin-induced hypoglycemia sensing and glucagon secretion. Nat Commun 2022; 13:5761. [PMID: 36180454 PMCID: PMC9525695 DOI: 10.1038/s41467-022-33484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The counterregulatory response to hypoglycemia that restores normal blood glucose levels is an essential physiological function. It is initiated, in large part, by incompletely characterized brain hypoglycemia sensing neurons that trigger the secretion of counterregulatory hormones, in particular glucagon, to stimulate hepatic glucose production. In a genetic screen of recombinant inbred BXD mice we previously identified Agpat5 as a candidate regulator of hypoglycemia-induced glucagon secretion. Here, using genetic mouse models, we demonstrate that Agpat5 expressed in agouti-related peptide neurons is required for their activation by hypoglycemia, for hypoglycemia-induced vagal nerve activity, and glucagon secretion. We find that inactivation of Agpat5 leads to increased fatty acid oxidation and ATP production and that suppressing Cpt1a-dependent fatty acid import into mitochondria restores hypoglycemia sensing. Collectively, our data show that AgRP neurons are involved in the control of glucagon secretion and that Agpat5, by partitioning fatty acyl-CoAs away from mitochondrial fatty acid oxidation and ATP generation, ensures that the fall in intracellular ATP, which triggers neuronal firing, faithfully reflects changes in glycemia. During hypoglycemia, glucagon secretion is part of the mechanism needed to restore normal blood glucose levels. Here, Strembitska et al. report that sensing of hypoglycemia by AgRP neurons requires Agpat5, an enzyme which prevents fatty acids from entering the mitochondria for ATP production, ensuring correct neuronal activation and glucagon secretion.
Collapse
|
13
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
14
|
Uddin MM, Briski KP. Neuroestradiol regulation of ventromedial hypothalamic nucleus 5'-AMP-activated protein kinase activity and counterregulatory hormone secretion in hypoglycemic male versus female rats. AIMS Neurosci 2021; 8:133-147. [PMID: 33490375 PMCID: PMC7815480 DOI: 10.3934/neuroscience.2021006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/10/2020] [Indexed: 02/02/2023] Open
Abstract
Hypoglycemia activates the ultra-sensitive energy gauge 5′-AMP-activated protein kinase (AMPK) in ventromedial hypothalamic nucleus (VMN) gluco-regulatory neurons. The VMN is exemplified by high levels of expression of the enzyme aromatase, which converts testosterone to estradiol. This study examined the hypothesis that neuroestradiol imposes sex-dimorphic control of VMN AMPK activity during eu- and/or hypoglycemia. VMN tissue corresponding to distinct rostro-caudal segments was obtained by micropunch dissection from testes-intact male and estradiol-replaced ovariectomized female rats that were infused intracerebroventricularly with the aromatase inhibitor letrozole (Lz) before subcutaneous insulin (INS) injection. In euglycemic rats, Lz treatment elevated (male) or decreased (female) middle VMN phosphoAMPK content, with concurrent effects on total AMPK expression. Lz prevented hypoglycemic up-regulation of the mean pAMPK/AMPK ratio in rostral and middle segments of the male VMN, and significantly inhibited this proportion throughout the VMN of hypoglycemic female rats. Lz prevented glucagon secretion in hypoglycemic rats of each sex, and abolished hypoglycemic hypercorticosteronemia in males. Results show that neuroestradiol regulation of VMN AMPK activity during euglycemia is region-specific and gender-divergent, e.g. inhibitory in males versus stimulatory in females. Intra-VMN distribution of hypoglycemia-activated AMPK varies between sexes, but in each sex, locally-generated estradiol is critical for sensor reactivity to this stimulus. Coincident Lz attenuation of VMN AMPK and counter-regulatory hormone responses to hypoglycemia infers a possible cause-and-effect association. Further effort is needed to elucidate the cellular and molecular mechanisms that underlie sex-dimorphic neuroestradiol control of VMN total AMPK and phosphoAMPK expression during distinct metabolic states.
Collapse
Affiliation(s)
- Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
15
|
Briski KP, Ibrahim MMH, Mahmood ASMH, Alshamrani AA. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism. Int J Mol Sci 2021; 22:ijms22020759. [PMID: 33451134 PMCID: PMC7828624 DOI: 10.3390/ijms22020759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy source to blood-derived glucose. VMN astrocytes are direct targets for metabolic stimulus-driven noradrenergic signaling due to their adrenergic receptor expression (AR). The current review discusses recent affirmative evidence that neuro-metabolic stability in the VMN may be shaped by NE influence on astrocyte glycogen metabolism and glycogen-derived substrate fuel supply. Noradrenergic modulation of estrogen receptor (ER) control of VMN glycogen phosphorylase (GP) isoform expression supports the interaction of catecholamine and estradiol signals in shaping the physiological stimulus-specific control of astrocyte glycogen mobilization. Sex-dimorphic NE control of glycogen synthase and GP brain versus muscle type proteins may be due, in part, to the dissimilar noradrenergic governance of astrocyte AR and ER variant profiles in males versus females. Forthcoming advances in the understanding of the molecular mechanistic framework for catecholamine stimulus integration with other regulatory inputs to VMN astrocytes will undoubtedly reveal useful new molecular targets in each sex for glycogen mediated defense of neuronal metabolic equilibrium during neuro-glucopenia.
Collapse
|
16
|
Alhamyani A, Mahmood AH, Alshamrani A, Ibrahim MMH, Briski KP. Central Type II Glucocorticoid Receptor Regulation of Ventromedial Hypothalamic Nucleus Glycogen Metabolic Enzyme and Glucoregulatory Neurotransmitter Marker Protein Expression in the Male Rat. JOURNAL OF ENDOCRINOLOGY AND DIABETES 2021; 8:148. [PMID: 34258390 PMCID: PMC8274514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ventromedial hypothalamic nucleus (VMN) glucoregulatory neurotransmitters γ-aminobutyric acid (GABA) and nitric oxide (NO) signal adjustments in glycogen mobilization. Glucocorticoids control astrocyte glycogen metabolism in vitro. The classical (type II) glucocorticoid receptor (GR) is expressed in key brain structures that govern glucostasis, including the VMN. Current research addressed the hypothesis that forebrain GR regulation of VMN glycogen synthase (GS) and phosphorylase (GP) protein expression correlates with control of glucoregulatory transmission. Groups of male rats were pretreated by intracerebroventricular (icv) delivery of the GR antagonist RU486 or vehicle prior to insulin-induced hypoglycemia (IIH), or were pretreated icv with dexamethasone (DEX) or vehicle before subcutaneous insulin diluent injection. DEX increased VMN GS and norepinephrine-sensitive GP-muscle type (GPmm), but did not alter metabolic deficit-sensitive GP-brain type (GPbb) expression. RU486 enhanced GS and GPbb profiles during IIH. VMN astrocyte (MCT1) and neuronal (MCT2) monocarboxylate transporter profiles were up-regulated in euglycemic and hypoglycemic animals by DEX or RU486, respectively. Glutamate decarboxylase65/67 and neuronal nitric oxide synthase (nNOS) proteins were both increased by DEX, yet RU486 augmented hypoglycemic nNOS expression patterns. Results show that GR exert divergent effects on VMN GS, MCT1/2, and nNOS proteins during eu- (stimulatory) versus hypoglycemia (inhibitory); these findings imply that up-regulated NO transmission may reflect, in part, augmented glucose incorporation into glycogen and/or increased tissue lactate requirements. Data also provide novel evidence for metabolic state-dependent GR regulation of VMN GPmm and GPbb profiles; thus, GABA signaling of metabolic stability may reflect, in part, stimulus-specific glycogen breakdown during eu- versus hypoglycemia.
Collapse
Affiliation(s)
- Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Ayed Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Mostafa M. H. Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| |
Collapse
|
17
|
Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Sex differences in glucoprivic regulation of glycogen metabolism in hypothalamic primary astrocyte cultures: Role of estrogen receptor signaling. Mol Cell Endocrinol 2020; 518:111000. [PMID: 32853745 PMCID: PMC7606756 DOI: 10.1016/j.mce.2020.111000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Hypoglycemia causes sex-reliant changes in hypothalamic astrocyte glycogen metabolism in vivo. The role of nuclear versus membrane astrocyte estrogen receptors (ER) in glucoprivic regulation of glycogen is unclear. Here, primary hypothalamic astrocyte cultures were treated with selective ER antagonists during glucoprivation to investigate the hypothesis that ER mediate sex-specific glycogen responses to glucoprivation. Results show that glucoprivic down-regulation of glycogen synthase expression is mediated by transmembrane G protein-coupled ER-1 (GPER) signaling in each sex and estrogen receptor (ER)-beta (ERβ) activity in females. Glucoprivic inhibition of glycogen phosphorylase involves GPER and ERβ in females, but ER-independent mechanisms in males. GPER, ERβ, and ER-alpha (ERα) inhibit or stimulate AMPK protein expression in male versus female astrocytes, respectively. Glucoprivic augmentation of phospho-AMPK profiles in male glia was opposed by GPER activation, whereas GPER and ERβ suppress this protein in females. Astrocyte ERα and GPER content was down-regulated in each sex during glucose deficiency, whereas ERβ levels was unaltered (males) or increased (females). Glucoprivation correspondingly elevated or diminished male versus female astrocyte glycogen content; ER antagonism reversed this response in males, but not females. Results identify distinctive ER variants involved in sex-similar versus sex-specific astrocyte protein responses to withdrawal of this substrate fuel. Notably, glucoprivation elicits a directional switch or gain-of-effect of GPER and ERβ on specific glial protein profiles. Outcomes infer that ERs are crucial for glucoprivic regulation of astrocyte glycogen accumulation in males. Alternatively, estradiol may act independently of ER signaling to disassemble this reserve in females.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
18
|
Bheemanapally K, Ibrahim MMH, Briski KP. Ultra-High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for High-Neuroanatomical Resolution Quantification of Brain Estradiol Concentrations. J Pharm Biomed Anal 2020; 191:113606. [PMID: 32966939 DOI: 10.1016/j.jpba.2020.113606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Ventromedial hypothalamic nucleus (VMN) control of glucostasis is estradiol (E-2)-dependent. E-2 regulation of VMN reactivity to hypoglycemia may involve changes in signal volume due to altered aromatase expression. Here, high-resolution micropunch dissection tools for isolation of segmental VMN tissue were used with Design of Experiments-refined uHPLC-electrospray ionization-mass spectrometry (LC-ESI-MS) methodology to investigate the premise that effects of acute and/or recurring hypoglycemia on VMN E-2 content are sex-dimorphic. Relationships among multiple independent mass spectrometric operational variables were assessed by Central Composite Design (CCD) to amplify E-2 chromatogram area. Combinations of spectrometric temperature and gas pressure variable combinations were screened by Akaike Information Criterion correction modeling. A Fibonacci Sequence design using CCD minimum and maximal variable limits produced a small-run model that replicated maximal response from CCD. E-2 chromatographic response was further enhanced by optimization of solid phase extraction and instrument source and collision-induced dissociation voltages. In male rats, acute and chronic hypoglycemia respectively elevated or diminished E-2 concentrations relative to baseline in both rostral and caudal VMN. However, females exhibited regional variability in tissue E-2 profiles during acute (increased, rostral VMN; no change, caudal VMN) and recurring (no change, rostral VMN; increased, caudal VMN) hypoglycemia. Outcomes demonstrate requisite LC-ESI-MS sensitivity for E-2 quantification in small-volume brain tissue samples acquired with high-neuroanatomical specificity. Current methodology will facilitate efforts to investigate physiological consequences of VMN rostro-caudal segment-specific acclimation of E-2 profiles to recurring hypoglycemia, including effects on gluco-regulatory function, in each sex.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
19
|
Uddin MM, Ibrahim MMH, Briski KP. Sex-dimorphic neuroestradiol regulation of ventromedial hypothalamic nucleus glucoregulatory transmitter and glycogen metabolism enzyme protein expression in the rat. BMC Neurosci 2020; 21:51. [PMID: 33238883 PMCID: PMC7687823 DOI: 10.1186/s12868-020-00598-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Ventromedial hypothalamic nucleus (VMN) gluco-regulatory transmission is subject to sex-specific control by estradiol. The VMN is characterized by high levels of aromatase expression. Methods The aromatase inhibitor letrozole (LZ) was used with high-resolution microdissection/Western blot techniques to address the hypothesis that neuroestradiol exerts sex-dimorphic control of VMN neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD) protein expression. Glycogen metabolism impacts VMN nNOS and GAD profiles; here, LZ treatment effects on VMN glycogen synthase (GS) and phosphorylase brain- (GPbb; glucoprivic-sensitive) and muscle (GPmm; norepinephrine-sensitive) variant proteins were examined. Results VMN aromatase protein content was similar between sexes. Intracerebroventricular LZ infusion of testes-intact male and ovariectomized, estradiol-replaced female rats blocked insulin-induced hypoglycemic (IIH) up-regulation of this profile. LZ exerted sex-contingent effects on basal VMN nNOS and GAD expression, but blocked IIH-induced NO stimulation and GAD suppression in each sex. Sex-contingent LZ effects on basal and hypoglycemic patterns of GPbb and GPmm expression occurred at distinctive levels of the VMN. LZ correspondingly down- or up-regulated baseline pyruvate recycling pathway marker protein expression in males (glutaminase) and females (malic enzyme-1), and altered INS effects on those proteins. Conclusions Results infer that neuroestradiol is required in each sex for optimal VMN metabolic transmitter signaling of hypoglycemic energy deficiency. Sex differences in VMN GP variant protein levels and sensitivity to aromatase may correlate with sex-dimorphic glycogen mobilization during this metabolic stress. Neuroestradiol may also exert sex-specific effects on glucogenic amino acid energy yield by actions on distinctive enzyme targets in each sex.
Collapse
Affiliation(s)
- Md Main Uddin
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
20
|
Sex-dimorphic Rostro-caudal Patterns of 5'-AMP-activated Protein Kinase Activation and Glucoregulatory Transmitter Marker Protein Expression in the Ventrolateral Ventromedial Hypothalamic Nucleus (VMNvl) in Hypoglycemic Male and Female Rats: Impact of Estradiol. J Mol Neurosci 2020; 71:1082-1094. [PMID: 33231812 DOI: 10.1007/s12031-020-01730-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamic nucleus-ventrolateral part (VMNvl) is an estradiol-sensitive structure that controls sex-specific behavior. Electrical reactivity of VMNvl neurons to hypoglycemia infers that cellular energy stability is monitored there. Current research investigated the hypothesis that estradiol elicits sex-dimorphic patterns of VMNvl metabolic sensor activation and gluco-regulatory neurotransmission during hypoglycemia. Rostral-, middle-, and caudal-VMNvl tissue was separately micropunch-dissected from letrozole (Lz)- or vehicle-injected male and estradiol- or vehicle-implanted ovariectomized (OVX) female rats for Western blot analysis of total and phosphorylated 5'-AMP-activated protein kinase (AMPK) protein expression and gluco-stimulatory [neuronal nitric oxide synthase (nNOS); steroidogenic factor-1 (SF1) or -inhibitory (glutamate decarboxylase65/67 (GAD)] transmitter marker proteins after sc insulin (INS) or vehicle injection. In both sexes, hypoglycemic up-regulation of phosphoAMPK was estradiol-dependent in rostral and middle, but not caudal VMNvl. AMPK activity remained elevated after recovery from hypoglycemia over the rostro-caudal VMNvl in female, but only in the rostral segment in male. In each sex, hypoglycemia correspondingly augmented or suppressed nNOS profiles in rostral and middle versus caudal VMNvl; these segmental responses persisted longer in female. Rostral and middle segment SF1 protein was inhibited by estradiol-independent mechanisms in hypoglycemic males, but increased by estradiol-reliant mechanisms in female. After INS injection, GAD expression was inhibited in the male rostral VMNvl without estradiol involvement, but this hormone was required for broader suppression of this profile in the female. Neuroanatomical variability of VMNvl metabolic transmitter reactivity to hypoglycemia underscores the existence of functionally different subgroups in that structure. The regional distribution and estradiol sensitivity of hypoglycemia-sensitive VMNvl neurons of each neurochemical phenotype evidently vary between sexes.
Collapse
|
21
|
Ibrahim MMH, Uddin MM, Bheemanapally K, Briski KP. Sex-dimorphic aromatase regulation of ventromedial hypothalamic nucleus glycogen content in euglycemic and insulin-induced hypoglycemic rats. Neurosci Lett 2020; 737:135284. [PMID: 32853718 DOI: 10.1016/j.neulet.2020.135284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Estrogen receptors control hypothalamic astrocyte glycogen accumulation in vitro. Glycogen metabolism impacts metabolic transmitter signaling in the ventromedial hypothalamic nucleus (VMN), a key glucoregulatory structure. Aromatase, the enzyme that converts testosterone to estradiol, is expressed at high levels in the VMN. Here, the aromatase inhibitor letrozole (Lz) was used alongside high-resolution microdissection/UPHLC-electrospray ionization-mass spectrometric methods to determine if neuroestradiol imposes sex-specific control of VMN glycogen content during glucostasis and/or glucoprivation. Testes-intact male and estradiol-replaced ovariectomized female rats were pretreated by lateral ventricular letrozole (Lz) infusion prior to subcutaneous insulin (INS) injection. Vehicle-treated female controls exhibited higher VMN glycogen content compared to males. Lz increased VMN glycogen levels in males, not females. INS-induced hypoglycemia (IIH) elevated (males) or diminished (females) rostral VMN glycogen accumulation. Induction of IIH in Lz-pretreated animals reduced male VMN glycogen mass, but augmented content in females. Data provide novel evidence for regional variation, in both sexes, in glycogen reactivity to IIH. Results highlight sex-dimorphic neuroestradiol regulation of VMN glycogen amassment during glucostasis, e.g. inhibitory in males versus insignificant in females. Locally-generated estradiol is evidently involved in hypoglycemic enhancement of male VMN glycogen, but conversely limits glycogen content in hypoglycemic females. Further research is needed to characterize mechanisms that underlie the directional shift in aromatase regulation of VMN glycogen in eu- versus hypoglycemic male rats and gain in negative impact in hypoglycemic females.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States
| | - Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, United States.
| |
Collapse
|
22
|
Bouvier ML, Fehsel K, Schmitt A, Meisenzahl-Lechner E, Gaebel W, von Wilmsdorff M. Sex-dependent alterations of dopamine receptor and glucose transporter density in rat hypothalamus under long-term clozapine and haloperidol medication. Brain Behav 2020; 10:e01694. [PMID: 32525610 PMCID: PMC7428470 DOI: 10.1002/brb3.1694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Sex-dependent disturbances of peripheral glucose metabolism are known complications of antipsychotic drug treatment. The influence of long-term clozapine and haloperidol medication on hypothalamus, maintaining aspects of internal body homeostasis, has not yet been completely clarified. METHODS After puberty, male and female Sprague Dawley rats were fed orally with ground pellets containing haloperidol (1 mg/kgBW/day) or clozapine (20 mg/kgBW/day) for 12 weeks. The hypothalamic protein expression of dopamine receptors D2R and D4R, melanocortin receptor MC4R, and glucose transporters Glut1 and Glut3 was examined. Glucose, glycogen, lactate, and pyruvate levels were determined, also malondialdehyde equivalents as markers of oxidative stress. RESULTS D2R expression was increased in the male haloperidol and clozapine group but decreased in females medicated with clozapine. D4R expression was upregulated under clozapine medication. While females showed increased Glut1, Glut3 was elevated in both male and female clozapine-medicated animals. We found no changes of hypothalamic malondialdehyde, glycogen, and MC4R. Hypothalamic lactate was elevated in the female clozapine group. CONCLUSION Clozapine sex-dependently affects the expression of D2R, Glut1, and Glut3. The upregulation of the glucose transporters indicates glucose deprivation in the endothelial cells and consequently in astrocytes and neurons. Increased hypothalamic lactate in females under clozapine points to enhanced glycolysis with a higher glucose demand to produce the required energy. Haloperidol did not change the expression of the glucose transporters and upregulated D2R only in males.
Collapse
Affiliation(s)
- Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, München, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
23
|
Mahmood ASMH, Napit PR, Ali MH, Briski KP. Estrogen Receptor Involvement in Noradrenergic Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neurotransmitter and Stimulus-Specific Glycogen Phosphorylase Enzyme Isoform Expression. ASN Neuro 2020; 12:1759091420910933. [PMID: 32233668 PMCID: PMC7133083 DOI: 10.1177/1759091420910933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norepinephrine (NE) directly regulates ventromedial hypothalamic nucleus (VMN) glucoregulatory neurons and also controls glycogen-derived fuel provision to those cells. VMN nitric oxide (NO) and γ-aminobutyric acid (GABA) neurons and astrocytes express estrogen receptor-alpha (ERα) and ER-beta (ERβ) proteins. Current research used selective ERα (1,3Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride) or ERβ (4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol) antagonists to address the premise that these ERs govern basal and/or NE-associated patterns of VMN metabolic neuron signaling and astrocyte glycogen metabolism. Both ERs stimulate expression of the enzyme marker protein neuronal nitric oxide synthase, not glutamate decarboxylase65/67. NE inhibition or augmentation of neuronal nitric oxide synthase and glutamate decarboxylase65/67 profiles was ER-independent or -dependent, respectively. In both neuron types, VMN ERβ activity inhibited baseline alpha1- (α1-) and/or alpha2- (α2-)adrenergic receptor (AR) expression, but ERα and -β signaling was paradoxically crucial for noradrenergic upregulation of α2-AR. NE inhibited glycogen synthase expression and exerted opposite effects on VMN adenosine monophosphate-sensitive glycogen phosphorylase (GP)-brain type (stimulatory) versus NE-sensitive GP muscle (inhibitory) via ERα or -β activity. Results document unique ERα and ERβ actions on metabolic transmitter and AR protein expression in VMN nitrergic versus GABAergic neurons. ER effects varied in the presence versus absence of NE, indicating that both neuron types are substrates for estradiol and noradrenergic regulatory interaction. NE-dependent ER control of VMN GP variant expression implies that these signals also act on astrocytes to direct physiological stimulus-specific control of glycogen metabolism, which may in turn influence GABA transmission.
Collapse
Affiliation(s)
- A S M H Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| |
Collapse
|
24
|
Mahmood ASMH, Uddin MM, Ibrahim MMH, Briski KP. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Metabolic-Sensory Neuron 5'-AMP-Activated Protein Kinase Activity: Impact of Estradiol. Int J Mol Sci 2020; 21:ijms21062013. [PMID: 32188013 PMCID: PMC7139458 DOI: 10.3390/ijms21062013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022] Open
Abstract
The mediobasal hypothalamus (MBH) shapes the neural regulation of glucostasis by 5′-AMP-activated protein kinase (AMPK)-dependent mechanisms. Yet, the neurochemical identity and neuroanatomical distribution of MBH neurons that express glucoprivic-sensitive AMPK remain unclear. The neurotransmitters γ-aminobutyric acid (GABA) and nitric oxide (NO) act within the MBH to correspondingly inhibit or stimulate glucose counter-regulation. The current review highlights recent findings that GABA and NO, neurons located in the ventromedial hypothalamic nucleus (VMN), a distinct important element of the MBH, are direct targets of noradrenergic regulatory signaling, and thereby, likely operate under the control of hindbrain metabolic-sensory neurons. The ovarian hormone estradiol acts within the VMN to govern energy homeostasis. Discussed here is current evidence that estradiol regulates GABA and NO nerve cell receptivity to norepinephrine and moreover, controls the noradrenergic regulation of AMPK activity in each cell type. Future gains in insight on mechanisms underpinning estradiol’s impact on neurotransmitter communication between the hindbrain and hypothalamic AMPKergic neurons are expected to disclose viable new molecular targets for the therapeutic simulation of hormonal enhancement of neuro-metabolic stability during circumstances of diminished endogenous estrogen secretion or glucose dysregulation.
Collapse
|
25
|
Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Sex-specific estrogen regulation of hypothalamic astrocyte estrogen receptor expression and glycogen metabolism in rats. Mol Cell Endocrinol 2020; 504:110703. [PMID: 31931041 PMCID: PMC7325597 DOI: 10.1016/j.mce.2020.110703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Brain astrocytes are implicated in estrogenic neuroprotection against bio-energetic insults, which may involve their glycogen energy reserve. Forebrain estrogen receptors (ER)-alpha (ERα) and -beta (ERβ) exert differential control of glycogen metabolic enzyme [glycogen synthase (GS); phosphorylase (GP)] expression in hypoglycemic male versus female rats. Studies were conducted using a rat hypothalamic astrocyte primary culture model along with selective ER agonists to investigate the premise that estradiol (E2) exerts sex-dimorphic control over astrocyte glycogen mass and metabolism. Female astrocyte GS and GP profiles are more sensitive to E2 stimulation than the male. E2 did not regulate expression of phospho-GS (inactive enzyme form) in either sex. Data also show that transmembrane G protein-coupled ER-1 (GPER) signaling is implicated in E2 control of GS profiles in each sex and alongside ERα, GP expression in females. E2 increases total 5'-AMP-activated protein kinase (AMPK) protein in female astrocytes, but stimulated pAMPK (active form) expression with equivalent potency via GPER in females and ERα in males. In female astrocytes, ERα protein was up-regulated at a lower E2 concentration and over a broader dosage range compared to males, whereas ERβ was increased after exposure to 1-10 nM versus 100 pM E2 levels in females and males, respectively. GPER profiles were stimulated by E2 in female, but not male astrocytes. E2 increased astrocyte glycogen content in female, but not male astrocytes; selective ERβ or ERα stimulation elevated glycogen levels in the female and male, respectively. Outcomes imply that dimorphic astrocyte ER and glycogen metabolic responses to E2 may reflect, in part, differential steroid induction of ER variant expression and/or regulation of post-receptor signaling in each sex.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
26
|
Bheemanapally K, Ibrahim MMH, Briski KP. Combinatory high-resolution microdissection/ultra performance liquid chromatographic-mass spectrometry approach for small tissue volume analysis of rat brain glycogen. J Pharm Biomed Anal 2020; 178:112884. [PMID: 31606560 PMCID: PMC6936218 DOI: 10.1016/j.jpba.2019.112884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/31/2023]
Abstract
Cyto-architectural diversity of brain structures emphasizes need for analytical tools for discriminative investigation of distinctive neural structures. Glycogen is the major energy reserve in the brain. There is speculation that brain utilization of this fuel source may affect detection of hypoglycemia. To evaluate sex-specific regulation of glycogen mass and mobilization in the glucose-sensory ventromedial hypothalamic nucleus (VMN), current research coupled UHPLC-electrospray ionization mass spectrometric (LC-ESI-MS) analysis capabilities with novel derivatization protocols for high-sensitivity measurement of glucose and glycogen in small-volume neural tissue samples. This work also sought to demonstrate utility of pairing this approach with optimized Western blot methods for measurement of glycogen metabolic enzyme protein expression. Here, high-resolution micropunch dissection tools for discriminative isolation of VMN tissue were used in conjunction with newly developed glycogen analytical methods and an experimental treatment paradigm for intra-cranial hindbrain-targeted administration of estrogen receptor-alpha (ERα) or -beta (ERβ) receptor antagonists to address the hypothesis that estradiol activates one or both hindbrain ER populations to exert sex-specific regulatory effects on VMN glycogen mass and hypoglycemia-associated mobilization. Outcomes validate a novel multi-analytical platform for investigation of in vivo sex-dimorphic regulation of glycogen metabolism in precisely-defined brain elements under conditions of energy balance versus imbalance. This combinatory approach will facilitate ongoing efforts to elucidate effects of acute versus chronic hypoglycemia on glycogen metabolism in characterized brain glucose-sensory loci and determine effects local glycogen mass and/or mobilization adaptions on sensory monitoring and signaling of recurring hypoglycemia in each sex.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
27
|
Briski KP, Mandal SK, Bheemanapally K, Ibrahim MMH. Effects of acute versus recurrent insulin-induced hypoglycemia on ventromedial hypothalamic nucleus metabolic-sensory neuron AMPK activity: Impact of alpha 1-adrenergic receptor signaling. Brain Res Bull 2020; 157:41-50. [PMID: 31981674 DOI: 10.1016/j.brainresbull.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Mechanisms that underlie metabolic sensor acclimation to recurring insulin-induced hypoglycemia (RIIH) are unclear. Norepinephrine (NE) regulates ventromedial hypothalamic nucleus (VMN) gluco-stimulatory nitric oxide (NO) and gluco-inhibitory γ-aminobutryic acid (GABA) neuron signaling. Current research addressed the hypothesis that during RIIH, NE suppresses 5'-AMP-activated protein kinase (AMPK) reactivity in both populations and impedes counter-regulation. The brain is postulated to utilize non-glucose substrates, e.g. amino acids glutamine (Gln), glutamate (Glu), and aspartate (Asp), to produce energy during hypoglycemia. A correlated aim investigated whether NE controls pyruvate recycling pathway marker protein (glutaminase, GLT; malic enzyme, ME-1) expression in either metabolic-sensory cell population. Male rats were injected subcutaneously with vehicle or insulin on days 1-3, then pretreated on day 4 by intracerebroventricular delivery of the alpha1-adrenergic receptor (α1-AR) reverse-agonist prazocin (PRZ) or vehicle before final insulin therapy. PRZ prevented acute hypoglycemic augmentation of AMPK activation in each cell group. Antecedent hypoglycemic repression of sensor activity was reversed by PRZ in GABA neurons. During RIIH, nitrergic neurons exhibited α1-AR - dependent up-regulated GLT and α2-AR profiles, while GABA cells showed down-regulated α1-AR. LC-ESI-MS analysis documented a decline in VMN Glu, Gln, and Asp concentrations during acute hypoglycemia, and habituation of the former two profiles to RIIH. PRZ attenuated glucagon and corticosterone secretion during acute hypoglycemia, but reversed decrements in output of both hormones during RIIH. Results implicate adjustments in impact of α1-AR signaling in repressed VMN metabolic-sensory AMPK activation and counter-regulatory dysfunction during RIIH. Antecedent hypoglycemia may up-regulate NO neuron energy yield via α1-AR - mediated up-regulated pyruvate recycling.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| |
Collapse
|
28
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
29
|
Uddin MM, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic estrogen receptor regulation of ventromedial hypothalamic nucleus glucoregulatory neuron adrenergic receptor expression in hypoglycemic male and female rats. Brain Res 2019; 1720:146311. [PMID: 31265816 PMCID: PMC6702034 DOI: 10.1016/j.brainres.2019.146311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
The ventromedial hypothalamic nucleus (VMN) is a vital component of the neural circuitry that regulates glucostasis. Norepinephrine (NE) controls VMN gluco-inhibitory γ-aminobutyric acid (GABA) and gluco-stimulatory nitric oxide (NO) transmission. Sex-specific insulin-induced hypoglycemic (IIH) patterns of VMN GABA signaling are estrogen receptor-alpha (ERα)- and -beta (ERβ)-dependent. Current research utilized combinatory immunocytochemistry, laser-microdissection, and Western blot techniques in a pharmacological approach to address the hypothesis that ERα and/or -β mediate sex-dimorphic VMN GABAergic and/or nitrergic nerve cell receptivity to NE and estradiol during IIH. The impact of these ER on expression of the pyruvate recycling pathway marker proteins glutaminase (GLS) and malic enzyme-1 (ME-1) was also examined. Both VMN neuron populations express ERα, ERβ, and G protein-coupled estrogen receptor-1 (GPER), along with alpha1, alpha2, and beta1 adrenergic receptor (AR) proteins. NO neurons exhibited ERα/β-dependent (beta1 AR, GPER) and -independent (alpha1 AR) sex differences in receptor protein responses to hypoglycemia. Similarly, sex-dimorphic effects of IIH on alpha1 AR, alpha2 AR, and ERα profiles in GABA neurons involve ERα/β. These ERs also underlie divergent adjustments in gluco-regulatory nerve cell GLS and ME-1 protein expression in hypoglycemic males and females. Sex-specific nitrergic and GABAergic nerve cell sensitivity to NE and E, respectively, during IIH may contribute to sex-contingent patterns of neurotransmitter signaling.
Collapse
Affiliation(s)
- M Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|