1
|
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An Update on the Adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic Causes and New Diagnostic Approaches. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2152-2168. [PMID: 38760634 PMCID: PMC11489183 DOI: 10.1007/s12311-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Unit, Royal North Shore Hospital, Sydney, Australia.
| | - Dennis Yeow
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Karl Ng
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Marina L Kennerson
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Sydney, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- Faculty of Medicine, St Vincent's Healthcare Campus, UNSW Sydney, Sydney, Australia
| |
Collapse
|
2
|
Xu Y, Li Y, Richard SA, Sun Y, Zhu C. Genetic pathways in cerebral palsy: a review of the implications for precision diagnosis and understanding disease mechanisms. Neural Regen Res 2024; 19:1499-1508. [PMID: 38051892 PMCID: PMC10883492 DOI: 10.4103/1673-5374.385855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/02/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Cerebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture. Patients with cerebral palsy are often only capable of limited activity, resulting from non-progressive disturbances in the fetal or neonatal brain. These disturbances severely impact the child's daily life and impose a substantial economic burden on the family. Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes, the understanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity. This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development. It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development, which can be further influenced by environmental factors. Despite continuous research endeavors, the underlying factors contributing to cerebral palsy remain are still elusive. However, significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development. Moreover, these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping, including thrombosis, angiogenesis, mitochondrial and oxidative phosphorylation function, neuronal migration, and cellular autophagy. Furthermore, exploring targeted genotypes holds potential for precision treatment. In conclusion, advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy. These breakthroughs have the potential to pave the way for new treatments and therapies, consequently shaping the future of cerebral palsy research and its clinical management. The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies. By elucidating the underlying cellular mechanisms, we can develop targeted interventions to optimize outcomes. A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy.
Collapse
Affiliation(s)
- Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- National Health Council (NHC) Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan Province, China
| | - Yifei Li
- Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Seidu A Richard
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medicine and Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Arpa Gutiérrez FJ, Abenza Abildúa MJ, Rouco Axpe I, Adarmes Gómez AD, Serrano Munuera C. Practical recommendations for the clinical evaluation of patients with hereditary ataxia and hereditary spastic paraplegia. Neurologia 2024; 39:515-522. [PMID: 36396094 DOI: 10.1016/j.nrleng.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hereditary ataxia (HA) and hereditary spastic paraplegia (HSP) are rare diseases; as such, they are rarely managed in general neurology consultations. We present a set of brief, practical recommendations for the diagnosis and management of these patients, as well as a standardised procedure for comprehensive evaluation of disability. We provide definitions for HA and "HA plus," and "pure" and "complicated" HSP; describe the clinical assessment of these patients, indicating the main complementary tests and clinical scales for physical and psychological assessment of the patients; and summarise the available treatments. These recommendations are intended to facilitate daily neurological practice and to unify clinical criteria and disability assessment protocols for patients with HA and HSP.
Collapse
Affiliation(s)
- F J Arpa Gutiérrez
- Facultad de Medicina de la Universidad Autónoma de Madrid, Fundación IdiPAZ, Madrid, Spain; Comisión de Ataxias y Paraparesias Espásticas de la Sociedad Española de Neurología (CEAPED)
| | - M J Abenza Abildúa
- Comisión de Ataxias y Paraparesias Espásticas de la Sociedad Española de Neurología (CEAPED); Sección de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain.
| | - I Rouco Axpe
- Comisión de Ataxias y Paraparesias Espásticas de la Sociedad Española de Neurología (CEAPED); Unidad de Ataxias y Paraparesias Espásticas Hereditarias, Servicio de Neurología, Hospital Universitario de Cruces, Bilbao, Bizkaia, Spain
| | - A D Adarmes Gómez
- Comisión de Ataxias y Paraparesias Espásticas de la Sociedad Española de Neurología (CEAPED); Servicio de Neurología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - C Serrano Munuera
- Comisión de Ataxias y Paraparesias Espásticas de la Sociedad Española de Neurología (CEAPED); Servicio de Neurología, Hospital Sant Joan de Déu, Martorell, Spain
| |
Collapse
|
4
|
Li R, Liu X, Ke C, Zeng F, Zeng Q, Xu X, Fan X, Zhang Y, Hou Q. ITPR1 variant-induced autosomal dominant hereditary spastic paraplegia in a Chinese family. Front Neurol 2024; 15:1365787. [PMID: 39011359 PMCID: PMC11247953 DOI: 10.3389/fneur.2024.1365787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease prominently characterized by slowly progressive lower limb weakness and spasticity. The significant genotypic and phenotypic heterogeneity of this disease makes its accurate diagnosis challenging. In this study, we identified the NM_001168272: c.2714A > G (chr3.hg19: g.4716912A > G, N905S) variant in the ITPR1 gene in a three-generation Chinese family with multiple individuals affected by HSP, which we believed to be associated with HSP pathogenesis. To confirm, we performed whole exome sequencing, copy number variant assays, dynamic mutation analysis of the entire family, and protein structure prediction. The variant identified in this study was in the coupling domain, and this is the first corroborated report assigning ITPR1 variants to HSP. These findings expand the clinical and genetic spectrum of HSP and provide important data for its genetic analysis and diagnosis.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xuan Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenming Ke
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanli Zeng
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Zeng
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Xiaowei Xu
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoqin Fan
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ying Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Iruzubieta P, Pellerin D, Bergareche A, Albajar I, Mondragón E, Vinagre A, Fernández-Torrón R, Moreno F, Equiza J, Campo-Caballero D, Poza JJ, Ruibal M, Formica A, Dicaire MJ, Danzi MC, Zuchner S, Croitoru I, Ruiz M, Schlüter A, Casasnovas C, Pujol A, Brais B, Houlden H, López de Munain A, Ruiz-Martínez J. Frequency and phenotypic spectrum of spinocerebellar ataxia 27B and other genetic ataxias in a Spanish cohort of late-onset cerebellar ataxia. Eur J Neurol 2023; 30:3828-3833. [PMID: 37578187 DOI: 10.1111/ene.16039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE Dominantly inherited GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene have recently been shown to cause spinocerebellar ataxia 27B (SCA27B). We aimed to study the frequency and phenotype of SCA27B in a cohort of patients with unsolved late-onset cerebellar ataxia (LOCA). We also assessed the frequency of SCA27B relative to other genetically defined LOCAs. METHODS We recruited a consecutive series of 107 patients with LOCA, of whom 64 remained genetically undiagnosed. We screened these 64 patients for the FGF14 GAA repeat expansion. We next analysed the frequency of SCA27B relative to other genetically defined forms of LOCA in the cohort of 107 patients. RESULTS Eighteen of 64 patients (28%) carried an FGF14 (GAA)≥250 expansion. The median (range) age at onset was 62.5 (39-72) years. The most common clinical features included gait ataxia (100%) and mild cerebellar dysarthria (67%). In addition, episodic symptoms and downbeat nystagmus were present in 39% (7/18) and 37% (6/16) of patients, respectively. SCA27B was the most common cause of LOCA in our cohort (17%, 18/107). Among patients with genetically defined LOCA, SCA27B was the main cause of pure ataxia, RFC1-related disease of ataxia with neuropathy, and SPG7 of ataxia with spasticity. CONCLUSION We showed that SCA27B is the most common cause of LOCA in our cohort. Our results support the use of FGF14 GAA repeat expansion screening as a first-tier genetic test in patients with LOCA.
Collapse
Affiliation(s)
- Pablo Iruzubieta
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Alberto Bergareche
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Inés Albajar
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Elisabet Mondragón
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Ana Vinagre
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Roberto Fernández-Torrón
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Fermín Moreno
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Jon Equiza
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - David Campo-Caballero
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Juan José Poza
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Marta Ruibal
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Alessandro Formica
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ioana Croitoru
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Adolfo López de Munain
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Javier Ruiz-Martínez
- Department of Neurology, Donostia University Hospital, Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Berciano J, Gazulla J, Infante J. History of Ataxias and Paraplegias with an Annotation on the First Description of Striatonigral Degeneration. CEREBELLUM (LONDON, ENGLAND) 2022; 21:531-544. [PMID: 34731448 DOI: 10.1007/s12311-021-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The aim of this paper is to carry out a historical overview of the evolution of the knowledge on degenerative cerebellar disorders and hereditary spastic paraplegias, over the last century and a half. Original descriptions of the main pathological subtypes, including Friedreich's ataxia, hereditary spastic paraplegia, olivopontocerebellar atrophy and cortical cerebellar atrophy, are revised. Special attention is given to the first accurate description of striatonigral degeneration by Hans Joachim Scherer, his personal and scientific trajectory being clarified. Pathological classifications of ataxia are critically analysed. The current clinical-genetic classification of ataxia is updated by taking into account recent molecular discoveries. We conclude that there has been an enormous progress in the knowledge of the nosology of hereditary ataxias and paraplegias, currently encompassing around 200 genetic subtypes.
Collapse
Affiliation(s)
- José Berciano
- Service of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", University of Cantabria, and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain.
| | - José Gazulla
- Service of Neurology, "Hospital Universitario Miguel Servet", Saragossa, Spain
| | - Jon Infante
- Service of Neurology, University Hospital "Marqués de Valdecilla (IDIVAL)", University of Cantabria, and "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| |
Collapse
|
7
|
Arpa Gutiérrez F, Abenza Abildúa M, Rouco Axpe I, Adarmes Gómez A, Serrano Munuera C. Guía práctica de evaluación de pacientes con ataxias y paraparesias espásticas hereditarias en consulta. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|