1
|
Diao H, Wu X, Li X, Liu S, Shan B, Cheng Y, Lu J, Tang J. Cortical Origin-Dependent Metabolic and Molecular Heterogeneity in Gliomas: Insights from 18F-FET PET. Biomedicines 2025; 13:657. [PMID: 40149633 PMCID: PMC11940755 DOI: 10.3390/biomedicines13030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: The objective of this study is to explore the potential variations in metabolic activity across gliomas originating from distinct cortical regions, as assessed by O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography (18F-FET PET). Also, this study seeks to elucidate whether these metabolic disparities correlate with the molecular characteristics and clinical prognoses of the tumors. Specifically, this research aims to determine whether variations in 18F-FET PET uptake are indicative of underlying genetic or biochemical differences that could influence patients' outcomes. Methods: The researchers retrospectively included 107 patients diagnosed with gliomas from neocortex and mesocortex, all of whom underwent hybrid PET/MR examinations, including 18F-FET PET and diffusion weighted imaging (DWI), prior to surgery. The mean and maximum tumor-to-background ratio (TBR) and apparent diffusion coefficient (ADC) values were calculated based on whole tumor volume segmentations. Comparisons of TBR, ADC values, and survival outcomes were performed to determine statistical differences between groups. Results: Among glioblastomas (GBMs, WHO grade 4) originating from the two cortical regions, there was a significant difference in the human Telomerase Reverse Transcriptase (TERT) promoter mutation rate, while no difference was observed in O6-Methylguanine-DNA Methyltransferase (MGMT) promoter methylation status. For WHO grade 3 gliomas, significant differences were found in the TERT promoter mutation rate and the proportion of 1p/19q co-deletion between the two cortical regions, whereas no difference was noted in MGMT methylation status. For WHO grade 2 gliomas, no molecular phenotypic differences were observed between the two cortical regions. In terms of survival, only GBMs originating from the mesocortex demonstrated significantly longer survival compared to those from the neocortex, while no statistically significant differences were found in survival for the other two groups. Conclusions: Gliomas originating from different cortical regions exhibit variations in metabolic activity, molecular phenotypes, and clinical outcomes.
Collapse
Affiliation(s)
- Huantong Diao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, China International Neuroscience Institute, Beijing 100053, China
| | - Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, China International Neuroscience Institute, Beijing 100053, China
| | - Xiaoran Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Siheng Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, China International Neuroscience Institute, Beijing 100053, China
| | - Bingyang Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, China International Neuroscience Institute, Beijing 100053, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, China International Neuroscience Institute, Beijing 100053, China
| | - Jie Lu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, China International Neuroscience Institute, Beijing 100053, China
| |
Collapse
|
2
|
Kelly B, Boudreau JE, Beyea S, Brewer K. Molecular imaging of viral pathogenesis and opportunities for the future. NPJ IMAGING 2025; 3:3. [PMID: 39872292 PMCID: PMC11761071 DOI: 10.1038/s44303-024-00056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging is used in clinical and research settings. Since tools to study viral pathogenesis longitudinally and systemically are limited, molecular imaging is an attractive and largely unexplored tool. This review discusses molecular imaging probes and techniques for studying viruses, particularly those currently used in oncology that are applicable to virology. Expanding the repertoire of probes to better detect viral disease may make imaging even more valuable in (pre-)clinical settings.
Collapse
Affiliation(s)
- Brianna Kelly
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
| | - Jeanette E. Boudreau
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- Department of Pathology, Dalhousie University, Halifax, NS Canada
- Beatrice Hunter Cancer Research Institute (BHCRI), Halifax, NS Canada
| | - Steven Beyea
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
3
|
Müller KJ, Forbrig R, Reis J, Wiegand L, Barci E, Kunte SC, Kaiser L, Schönecker S, Schichor C, Harter PN, Thon N, von Baumgarten L, Preusser M, Albert NL. Measurable disease as baseline criterion for response assessment in glioblastoma: A comparison of PET -based (PET RANO 1.0) and MRI-based (RANO) assessments. Neuro Oncol 2025; 27:77-88. [PMID: 39561103 PMCID: PMC11726251 DOI: 10.1093/neuonc/noae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Recently, criteria based on amino acid positron emission tomography (PET) have been proposed for response assessment in diffuse gliomas (PET RANO 1.0). In this study, we compare the prevalence of measurable disease according to PET RANO 1.0 with magnetic resonance imaging (MRI)-based Response Assessment in Neuro-Oncology (RANO) criteria in glioblastoma. METHODS We retrospectively identified patients with newly diagnosed IDH-wild-type glioblastoma who underwent [18F] Fluoroethyltyrosine (FET) PET and MRI after resection or biopsy and before radio-/radiochemotherapy. Two independent investigators analyzed measurable disease according to PET RANO 1.0 or MRI-RANO criteria. Additionally, lesion size, congruency patterns, and uptake intensity on [18F]FET PET images were assessed. RESULTS We evaluated 125 patients including 49 cases after primary resection and 76 cases after biopsy. Using PET criteria, 113 out of 125 patients (90.4%) had measurable disease, with a median PET-positive volume of 15.34 cm3 (8.83-38.03). With MRI, a significantly lower proportion of patients had measurable disease (57/125, 45.6%; P < .001) with a median sum of maximum cross-sectional diameters of 35.65 mm (26.18-45.98). None of the 12 patients without measurable disease on PET had measurable disease on MRI. Contrariwise, 56/68 patients (82.4%) without measurable disease on MRI exhibited measurable disease on PET. Clinical performance status correlated significantly with PET-positive volume and MRI-based sum of diameters (P < .0059, P < .0087, respectively). CONCLUSIONS [18F]FET PET identifies a higher number of patients with measurable disease compared to conventional MRI in newly diagnosed glioblastoma. PET-based assessment may serve as a novel baseline parameter for evaluating residual tumor burden and improving patient stratification in glioblastoma studies. Further validation in prospective trials is warranted.
Collapse
Affiliation(s)
- Katharina J Müller
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jonas Reis
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lilian Wiegand
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Enio Barci
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophie C Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Patrick N Harter
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Niklas Thon
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Horsley PJ, Bailey DL, Schembri G, Hsiao E, Drummond J, Back MF. The role of amino acid PET in radiotherapy target volume delineation for adult-type diffuse gliomas: A review of the literature. Crit Rev Oncol Hematol 2025; 205:104552. [PMID: 39521308 DOI: 10.1016/j.critrevonc.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To summarise existing literature examining amino acid positron emission tomography (AA-PET) for radiotherapy target volume delineation in patients with gliomas. METHODS Systematic search of MEDLINE and EMBASE databases. RESULTS Twenty studies met inclusion criteria. Studies comparing MRI- and AA-PET- derived target volumes consistently found these to be complementary. Across studies, AA-PET was a strong predictor of the site of subsequent relapse. In studies examining AA-PET-guided radiotherapy at standard doses, including one study using reduced margins, survival outcomes were similar to historical cohorts whose volumes were generated using MRI alone. Four prospective single-arm trials examining AA-PET-guided dose-escalated radiotherapy reported mixed results. The two trials that used both a higher biologically-effective dose and boost-volumes defined using both MRI and AA-PET reported promising outcomes. CONCLUSION AA-PET is a promising complementary tool to MRI for radiotherapy target volume delineation, with potential benefits requiring further validation including margin reduction and facilitation of dose-escalation.
Collapse
Affiliation(s)
- Patrick J Horsley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Geoffrey Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - James Drummond
- Department of Radiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael F Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; The Brain Cancer Group, Sydney, New South Wales, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| |
Collapse
|
5
|
Huang J, Wang J, Cui B, Yang H, Tian D, Ma J, Duan W, Chen Z, Lu J. The pons as an optimal background reference region for spinal 18F-FET PET/MRI evaluation. EJNMMI Res 2024; 14:69. [PMID: 39060564 PMCID: PMC11282009 DOI: 10.1186/s13550-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND This study aims to evaluate the effect of various background reference regions on spinal 18F-FET PET imaging, with a focus on distinguishing between spinal tumors and myelitis. To enhance diagnostic accuracy, we investigated the pons and several other spinal cord area as potential references, given the challenges in interpreting spinal PET results. RESULTS A retrospective analysis was conducted on 30 patients, 15 with cervical myelitis and 15 with cervical tumors, who underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET/MR imaging. The stability of uptake across four regions, including the pons, C2, C2-C7, and T1-T3, was compared. The standardized uptake value ratio (SUVR) was then evaluated using various background regions, and their effectiveness in differentiating between spinal tumors and myelitis was compared. Additionally, we correlated the SUVR values derived from these regions with the Ki-67 proliferation index in tumor patients. The study found no significant difference in SUVmax (U = 110, p = 0.93) and SUVmean (U = 89, p = 0.35) values at lesion sites between myelitis and tumor patients. The pons had the highest average uptake (p < 0.001) compared to the other three regions. However, its coefficient of variation (CV) was significantly lower than that of the C2-C7 (p < 0.0001) and T1-T3 segments (p < 0.05). The SUVRmax values, calculated using the regions of pons, C2-C7 and T1-T3, were found to significantly differentiate between tumors and myelitis (p < 0.05). However, only the pons-based SUVRmean was able to significantly distinguish between the two groups (p < 0.05). Additionally, the pons-based SUVRmax (r = 0.63, p = 0.013) and SUVRmean (r = 0.67, p = 0.007) demonstrated a significant positive correlation with the Ki-67 index. CONCLUSIONS This study suggests that the pons may be considered a suitable reference region for spinal 18F-FET PET imaging, which can improve the differentiation between spinal tumors and myelitis. The significant correlation between pons-based SUVR values and the Ki-67 index further highlights the potential of this approach in assessing tumor cell proliferation.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Defeng Tian
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jie Ma
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Lamba M, Singh PR, Bandyopadhyay A, Goswami A. Synthetic 18F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Med Chem 2024; 15:1899-1920. [PMID: 38911154 PMCID: PMC11187557 DOI: 10.1039/d4md00033a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
The concept of positron emission tomography (PET) based imaging was developed more than 40 years ago. It has been a widely adopted technique for detecting and staging numerous diseases in clinical settings, particularly cancer, neuro- and cardio-diseases. Here, we reviewed the evolution of PET and its advantages over other imaging modalities in clinical settings. Primarily, this review discusses recent advances in the synthesis of 18F radiolabeled biomolecules in light of the widely accepted performance for effective PET. The discussion particularly emphasizes the 18F-labeling chemistry of carbohydrates, lipids, amino acids, oligonucleotides, peptides, and protein molecules, which have shown promise for PET imaging in recent decades. In addition, we have deliberated on how 18F-labeled biomolecules enable the detection of metabolic changes at the cellular level and the selective imaging of gross anatomical localization via PET imaging. In the end, the review discusses the future perspective of PET imaging to control disease in clinical settings. We firmly believe that collaborative multidisciplinary research will further widen the comprehensive applications of PET approaches in the clinical management of cancer and other pathological outcomes.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Prasoon Raj Singh
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Birla Farms Ropar Punjab-140001 India
| |
Collapse
|
7
|
Gröner B, Hoffmann C, Endepols H, Urusova EA, Brugger M, Neumaier F, Timmer M, Neumaier B, Zlatopolskiy BD. Radiosynthesis and Preclinical Evaluation of m-[ 18F]FET and [ 18F]FET-OMe as Novel [ 18F]FET Analogs for Brain Tumor Imaging. Mol Pharm 2024; 21:2795-2812. [PMID: 38747353 DOI: 10.1021/acs.molpharmaceut.3c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
O-([18F]Fluoroethyl)-l-tyrosine ([18F]FET) is actively transported into the brain and cancer cells by LAT1 and possibly other amino acid transporters, which enables brain tumor imaging by positron emission tomography (PET). However, tumor delivery of this probe in the presence of competing amino acids may be limited by a relatively low affinity for LAT1. The aim of the present work was to evaluate the meta-substituted [18F]FET analog m-[18F]FET and the methyl ester [18F]FET-OMe, which were designed to improve tumor delivery by altering the physicochemical, pharmacokinetic, and/or transport properties. Both tracers could be prepared with good radiochemical yields of 41-56% within 66-90 min. Preclinical evaluation with [18F]FET as a reference tracer demonstrated reduced in vitro uptake of [18F]FET-OMe by U87 glioblastoma cells and no advantage for in vivo tumor imaging. In contrast, m-[18F]FET showed significantly improved in vitro uptake and accelerated in vivo tumor accumulation in an orthotopic glioblastoma model. As such, our work identifies m-[18F]FET as a promising alternative to [18F]FET for brain tumor imaging that deserves further evaluation with regard to its transport properties and in vivo biodistribution.
Collapse
Affiliation(s)
- Benedikt Gröner
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Chris Hoffmann
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Heike Endepols
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Elizaveta A Urusova
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Melanie Brugger
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
| | - Felix Neumaier
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Marco Timmer
- Faculty of Medicine and University Hospital Cologne, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Wilhelm-Johnen-Straße, Jülich 52428, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Kerpener Straße 62, Cologne 50937, Germany
| |
Collapse
|
8
|
Manzarbeitia-Arroba B, Hodolic M, Pichler R, Osipova O, Soriano-Castrejón ÁM, García-Vicente AM. 18F-Fluoroethyl-L Tyrosine Positron Emission Tomography Radiomics in the Differentiation of Treatment-Related Changes from Disease Progression in Patients with Glioblastoma. Cancers (Basel) 2023; 16:195. [PMID: 38201621 PMCID: PMC10778283 DOI: 10.3390/cancers16010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The follow-up of glioma patients after therapeutic intervention remains a challenging topic, as therapy-related changes can emulate true progression in contrast-enhanced magnetic resonance imaging. 18F-fluoroethyl-tyrosine (18F-FET) is a radiopharmaceutical that accumulates in glioma cells due to an increased expression of L-amino acid transporters and, contrary to gadolinium, does not depend on blood-brain barrier disruption to reach tumoral cells. It has demonstrated a high diagnostic value in the differentiation of tumoral viability and pseudoprogression or any other therapy-related changes, especially when combining traditional visual analysis with modern radiomics. In this review, we aim to cover the potential role of 18F-FET positron emission tomography in everyday clinical practice when applied to the follow-up of patients after the first therapeutical intervention, early response evaluation, and the differential diagnosis between therapy-related changes and progression.
Collapse
Affiliation(s)
| | - Marina Hodolic
- Nuclear Medicine Department, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Robert Pichler
- Institute of Nuclear Medicine Kepler University Hospital—Neuromed Campus, 4020 Linz, Austria; (R.P.); (O.O.)
| | - Olga Osipova
- Institute of Nuclear Medicine Kepler University Hospital—Neuromed Campus, 4020 Linz, Austria; (R.P.); (O.O.)
| | | | - Ana María García-Vicente
- Nuclear Medicine Department, University Hospital of Toledo, 45007 Toledo, Spain; (B.M.-A.); (Á.M.S.-C.)
| |
Collapse
|
9
|
Brighi C, Puttick S, Woods A, Keall P, Tooney PA, Waddington DEJ, Sproule V, Rose S, Fay M. Comparison between [ 68Ga]Ga-PSMA-617 and [ 18F]FET PET as Imaging Biomarkers in Adult Recurrent Glioblastoma. Int J Mol Sci 2023; 24:16208. [PMID: 38003399 PMCID: PMC10671181 DOI: 10.3390/ijms242216208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this prospective clinical study was to evaluate the potential of the prostate specific membrane antigen (PSMA) targeting ligand, [68Ga]-PSMA-Glu-NH-CO-NH-Lys-2-naphthyl-L-Ala-cyclohexane-DOTA ([68Ga]Ga-PSMA-617) as a positron emission tomography (PET) imaging biomarker in recurrent glioblastoma patients. Patients underwent [68Ga]Ga-PSMA-617 and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET scans on two separate days. [68Ga]Ga-PSMA-617 tumour selectivity was assessed by comparing tumour volume delineation and by assessing the intra-patient correlation between tumour uptake on [68Ga]Ga-PSMA-617 and [18F]FET PET images. [68Ga]Ga-PSMA-617 tumour specificity was evaluated by comparing its tumour-to-brain ratio (TBR) with [18F]FET TBR and its tumour volume with the magnetic resonance imaging (MRI) contrast-enhancing (CE) tumour volume. Ten patients were recruited in this study. [68Ga]Ga-PSMA-617-avid tumour volume was larger than the [18F]FET tumour volume (p = 0.063). There was a positive intra-patient correlation (median Pearson r = 0.51; p < 0.0001) between [68Ga]Ga-PSMA-617 and [18F]FET in the tumour volume. [68Ga]Ga-PSMA-617 had significantly higher TBR (p = 0.002) than [18F]FET. The [68Ga]Ga-PSMA-617-avid tumour volume was larger than the CE tumour volume (p = 0.0039). Overall, accumulation of [68Ga]-Ga-PSMA-617 beyond [18F]FET-avid tumour regions suggests the presence of neoangiogenesis in tumour regions that are not overly metabolically active yet. Higher tumour specificity suggests that [68Ga]-Ga-PSMA-617 could be a better imaging biomarker for recurrent tumour delineation and secondary treatment planning than [18F]FET and CE MRI.
Collapse
Affiliation(s)
- Caterina Brighi
- Image X Institute, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney 2015, Australia; (P.K.); (D.E.J.W.)
| | - Simon Puttick
- AdvanCell Isotopes Pty Ltd., Sydney 2000, Australia; (S.P.); (S.R.)
| | - Amanda Woods
- GenesisCare, Newcastle 2290, Australia; (A.W.); (V.S.); (M.F.)
| | - Paul Keall
- Image X Institute, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney 2015, Australia; (P.K.); (D.E.J.W.)
| | - Paul A. Tooney
- MHF Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle 2308, Australia;
| | - David E. J. Waddington
- Image X Institute, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney 2015, Australia; (P.K.); (D.E.J.W.)
| | - Vicki Sproule
- GenesisCare, Newcastle 2290, Australia; (A.W.); (V.S.); (M.F.)
| | - Stephen Rose
- AdvanCell Isotopes Pty Ltd., Sydney 2000, Australia; (S.P.); (S.R.)
| | - Michael Fay
- GenesisCare, Newcastle 2290, Australia; (A.W.); (V.S.); (M.F.)
- MHF Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle 2308, Australia;
| |
Collapse
|
10
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
11
|
Langen KJ, Galldiks N, Mauler J, Kocher M, Filß CP, Stoffels G, Régio Brambilla C, Stegmayr C, Willuweit A, Worthoff WA, Shah NJ, Lerche C, Mottaghy FM, Lohmann P. Hybrid PET/MRI in Cerebral Glioma: Current Status and Perspectives. Cancers (Basel) 2023; 15:3577. [PMID: 37509252 PMCID: PMC10377176 DOI: 10.3390/cancers15143577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Advanced MRI methods and PET using radiolabelled amino acids provide valuable information, in addition to conventional MR imaging, for brain tumour diagnostics. These methods are particularly helpful in challenging situations such as the differentiation of malignant processes from benign lesions, the identification of non-enhancing glioma subregions, the differentiation of tumour progression from treatment-related changes, and the early assessment of responses to anticancer therapy. The debate over which of the methods is preferable in which situation is ongoing, and has been addressed in numerous studies. Currently, most radiology and nuclear medicine departments perform these examinations independently of each other, leading to multiple examinations for the patient. The advent of hybrid PET/MRI allowed a convergence of the methods, but to date simultaneous imaging has reached little relevance in clinical neuro-oncology. This is partly due to the limited availability of hybrid PET/MRI scanners, but is also due to the fact that PET is a second-line examination in brain tumours. PET is only required in equivocal situations, and the spatial co-registration of PET examinations of the brain to previous MRI is possible without disadvantage. A key factor for the benefit of PET/MRI in neuro-oncology is a multimodal approach that provides decisive improvements in the diagnostics of brain tumours compared with a single modality. This review focuses on studies investigating the diagnostic value of combined amino acid PET and 'advanced' MRI in patients with cerebral gliomas. Available studies suggest that the combination of amino acid PET and advanced MRI improves grading and the histomolecular characterisation of newly diagnosed tumours. Few data are available concerning the delineation of tumour extent. A clear additive diagnostic value of amino acid PET and advanced MRI can be achieved regarding the differentiation of tumour recurrence from treatment-related changes. Here, the PET-guided evaluation of advanced MR methods seems to be helpful. In summary, there is growing evidence that a multimodal approach can achieve decisive improvements in the diagnostics of cerebral gliomas, for which hybrid PET/MRI offers optimal conditions.
Collapse
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 53127 Bonn, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jörg Mauler
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Martin Kocher
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Christian Peter Filß
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Cláudia Régio Brambilla
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Wieland Alexander Worthoff
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Department of Neurology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Felix Manuel Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| |
Collapse
|
12
|
Galldiks N, Lohmann P, Fink GR, Langen KJ. Amino Acid PET in Neurooncology. J Nucl Med 2023; 64:693-700. [PMID: 37055222 DOI: 10.2967/jnumed.122.264859] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Indexed: 04/15/2023] Open
Abstract
For decades, several amino acid PET tracers have been used to optimize diagnostics in patients with brain tumors. In clinical routine, the most important clinical indications for amino acid PET in brain tumor patients are differentiation of neoplasm from nonneoplastic etiologies, delineation of tumor extent for further diagnostic and treatment planning (i.e., diagnostic biopsy, resection, or radiotherapy), differentiation of treatment-related changes such as pseudoprogression or radiation necrosis after radiation or chemoradiation from tumor progression at follow-up, and assessment of response to anticancer therapy, including prediction of patient outcome. This continuing education article addresses the diagnostic value of amino acid PET for patients with either glioblastoma or metastatic brain cancer.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany;
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
13
|
Wollring MM, Werner JM, Ceccon G, Lohmann P, Filss CP, Fink GR, Langen KJ, Galldiks N. Clinical applications and prospects of PET imaging in patients with IDH-mutant gliomas. J Neurooncol 2022; 162:481-488. [PMID: 36577872 DOI: 10.1007/s11060-022-04218-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.
Collapse
Affiliation(s)
- Michael M Wollring
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany.
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
| | - Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
14
|
Allard B, Dissaux B, Bourhis D, Dissaux G, Schick U, Salaün PY, Abgral R, Querellou S. Hotspot on 18F-FET PET/CT to Predict Aggressive Tumor Areas for Radiotherapy Dose Escalation Guiding in High-Grade Glioma. Cancers (Basel) 2022; 15:cancers15010098. [PMID: 36612093 PMCID: PMC9817533 DOI: 10.3390/cancers15010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The standard therapy strategy for high-grade glioma (HGG) is based on the maximal surgery followed by radio-chemotherapy (RT-CT) with insufficient control of the disease. Recurrences are mainly localized in the radiation field, suggesting an interest in radiotherapy dose escalation to better control the disease locally. We aimed to identify a similarity between the areas of high uptake on O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography/computed tomography (PET) before RT-CT, the residual tumor on post-therapy NADIR magnetic resonance imaging (MRI) and the area of recurrence on MRI. This is an ancillary study from the IMAGG prospective trial assessing the interest of FET PET imaging in RT target volume definition of HGG. We included patients with diagnoses of HGG obtained by biopsy or tumor resection. These patients underwent FET PET and brain MRIs, both after diagnosis and before RT-CT. The follow-up consisted of sequential brain MRIs performed every 3 months until recurrence. Tumor delineation on the initial MRI 1 (GTV 1), post-RT-CT NADIR MRI 2 (GTV 2), and progression MRI 3 (GTV 3) were performed semi-automatically and manually adjusted by a neuroradiologist specialist in neuro-oncology. GTV 2 and GTV 3 were then co-registered on FET PET data. Tumor volumes on FET PET (MTV) were delineated using a tumor to background ratio (TBR) ≥ 1.6 and different % SUVmax PET thresholds. Spatial similarity between different volumes was performed using the dice (DICE), Jaccard (JSC), and overlap fraction (OV) indices and compared together in the biopsy or partial surgery group (G1) and the total or subtotal surgery group (G2). Another overlap index (OV') was calculated to determine the threshold with the highest probability of being included in the residual volume after RT-CT on MRI 2 and in MRI 3 (called "hotspot"). A total of 23 patients were included, of whom 22% (n = 5) did not have a NADIR MRI 2 due to a disease progression diagnosed on the first post-RT-CT MRI evaluation. Among the 18 patients who underwent a NADIR MRI 2, the average residual tumor was approximately 71.6% of the GTV 1. A total of 22% of patients (5/23) showed an increase in GTV 2 without diagnosis of true progression by the multidisciplinary team (MDT). Spatial similarity between MTV and GTV 2 and between MTV and GTV 3 were higher using a TBR ≥ 1.6 threshold. These indices were significantly better in the G1 group than the G2 group. In the FET hotspot analysis, the best similarity (good agreement) with GTV 2 was found in the G1 group using a 90% SUVmax delineation method and showed a trend of statistical difference with those (poor agreement) in the G2 group (OV' = 0.67 vs. 0.38, respectively, p = 0.068); whereas the best similarity (good agreement) with GTV 3 was found in the G1 group using a 80% SUVmax delineation method and was significantly higher than those (poor agreement) in the G2 group (OV'= 0.72 vs. 0.35, respectively, p = 0.014). These results showed modest spatial similarity indices between MTV, GTV 2, and GTV 3 of HGG. Nevertheless, the results were significantly improved in patients who underwent only biopsy or partial surgery. TBR ≥ 1.6 and 80-90% SUVmax FET delineation methods showing a good agreement in the hotspot concept for targeting standard dose and radiation boost. These findings need to be tested in a larger randomized prospective study.
Collapse
Affiliation(s)
- Bastien Allard
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
| | - Brieg Dissaux
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
- Radiology Department, University Hospital, 29200 Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Gurvan Dissaux
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- Radiation Oncology Department, University Hospital, 29200 Brest, France
- LaTIM, INSERM 1101, 29200 Brest, France
| | - Ulrike Schick
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- Radiation Oncology Department, University Hospital, 29200 Brest, France
- LaTIM, INSERM 1101, 29200 Brest, France
| | - Pierre-Yves Salaün
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Ronan Abgral
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
- Correspondence:
| |
Collapse
|
15
|
Piccardo A, Albert NL, Borgwardt L, Fahey FH, Hargrave D, Galldiks N, Jehanno N, Kurch L, Law I, Lim R, Lopci E, Marner L, Morana G, Young Poussaint T, Seghers VJ, Shulkin BL, Warren KE, Traub-Weidinger T, Zucchetta P. Joint EANM/SIOPE/RAPNO practice guidelines/SNMMI procedure standards for imaging of paediatric gliomas using PET with radiolabelled amino acids and [ 18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:3852-3869. [PMID: 35536420 PMCID: PMC9399211 DOI: 10.1007/s00259-022-05817-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
Abstract
Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Genoa, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Frederic H Fahey
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren Hargrave
- Department of Paediatric Oncology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie Paris, Paris, France
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany.
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Tina Young Poussaint
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victor J Seghers
- Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Barry L Shulkin
- Nuclear Medicine Department of Diagnostic Imaging St. Jude Children's Research Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| |
Collapse
|
16
|
Two Decades of Brain Tumour Imaging with O-(2-[18F]fluoroethyl)-L-tyrosine PET: The Forschungszentrum Jülich Experience. Cancers (Basel) 2022; 14:cancers14143336. [PMID: 35884396 PMCID: PMC9319157 DOI: 10.3390/cancers14143336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary PET using radiolabelled amino acids has become an essential tool for diagnosing brain tumours in addition to MRI. O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is one of the most successful tracers in the field. We analysed our database of 6534 FET PET examinations regarding the diagnostic needs and preferences of the referring physicians for FET PET in the clinical decision-making process. The demand for FET PET increased considerably in the last decade, especially for differentiating tumour progress from treatment-related changes in gliomas. Accordingly, referring physicians rated the diagnostics of recurrent glioma and recurrent brain metastases as the most relevant indication for FET PET. The analysis and survey results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for approval for routine use. Abstract O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians’ rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use.
Collapse
|
17
|
Vettermann FJ, Diekmann C, Weidner L, Unterrainer M, Suchorska B, Ruf V, Dorostkar M, Wenter V, Herms J, Tonn JC, Bartenstein P, Riemenschneider MJ, Albert NL. L-type amino acid transporter (LAT) 1 expression in 18F-FET-negative gliomas. EJNMMI Res 2021; 11:124. [PMID: 34905134 PMCID: PMC8671595 DOI: 10.1186/s13550-021-00865-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) is a highly sensitive PET tracer for glioma imaging, and its uptake is suggested to be driven by an overexpression of the L-type amino-acid transporter 1 (LAT1). However, 30% of low- and 5% of high-grade gliomas do not present enhanced 18F-FET uptake at primary diagnosis (“18F-FET-negative gliomas”) and the pathophysiologic basis for this phenomenon remains unclear. The aim of this study was to determine the expression of LAT1 in a homogeneous group of newly diagnosed 18F-FET-negative gliomas and to compare them to a matched group of 18F-FET-positive gliomas. Forty newly diagnosed IDH-mutant astrocytomas without 1p/19q codeletion were evaluated (n = 20 18F-FET-negative (tumour-to-background ratio (TBR) < 1.6), n = 20 18F-FET-positive gliomas (TBR > 1.6)). LAT1 immunohistochemistry (IHC) was performed using SLC7A5/LAT1 antibody. The percentage of LAT1-positive tumour cells (%) and the staining intensity (range 0–2) were multiplied to an overall score (H-score; range 0–200) and correlated to PET findings as well as progression-free survival (PFS). Results IHC staining of LAT1 expression was positive in both, 18F-FET-positive as well as 18F-FET-negative gliomas. No differences were found between the 18F-FET-negative and 18F-FET-positive group with regard to percentage of LAT1-positive tumour cells, staining intensity or H-score. Interestingly, the LAT1 expression showed a significant negative correlation with the PFS (p = 0.031), whereas no significant correlation was found for TBRmax, neither in the overall group nor in the 18F-FET-positive group only (p = 0.651 and p = 0.140). Conclusion Although LAT1 is reported to mediate the uptake of 18F-FET into tumour cells, the levels of LAT1 expression do not correlate with the levels of 18F-FET uptake in IDH-mutant astrocytomas. In particular, the lack of tracer uptake in 18F-FET-negative gliomas cannot be explained by a reduced LAT1 expression. A higher LAT1 expression in IDH-mutant astrocytomas seems to be associated with a short PFS. Further studies regarding mechanisms influencing the uptake of 18F-FET are necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00865-9.
Collapse
Affiliation(s)
- Franziska J Vettermann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.
| | - Caroline Diekmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Viktoria Ruf
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mario Dorostkar
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Krämer F, Gröner B, Hoffmann C, Craig A, Brugger M, Drzezga A, Timmer M, Neumaier F, Zlatopolskiy BD, Endepols H, Neumaier B. Evaluation of 3-l- and 3-d-[ 18F]Fluorophenylalanines as PET Tracers for Tumor Imaging. Cancers (Basel) 2021; 13:cancers13236030. [PMID: 34885141 PMCID: PMC8656747 DOI: 10.3390/cancers13236030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The early detection and treatment of malignant brain tumors can significantly improve the survival time and life quality of affected patients. Whereas positron emission tomography (PET) with O-(2-[18F]fluoroethyl)tyrosine ([18F]FET) offers improved diagnostic accuracy compared to other imaging methods, there is still a need for PET tracers with better tumor-specificity. A higher protein incorporation rate, as well as a higher affinity for the amino acid transporter LAT1, could provide probes with superior image quality compared to [18F]FET. The aim of the present study was a preclinical evaluation of the two enantiomeric phenylalanine (Phe) analogues, 3-l- and 3-d-[18F]fluorophenylalanine ([18F]FPhes), as possible alternatives to [18F]FET. Based on promising in vitro evaluation results, the radiolabeled amino acids were studied in vivo in two subcutaneous and one orthotopic rodent tumor xenograft models using µPET. The results show that 3-l- and 3-d-[18F]FPhe enable high-quality visualization of tumors with certain advantages over [18F]FET, making them promising candidates for further preclinical and clinical evaluations. Abstract Purpose: The preclinical evaluation of 3-l- and 3-d-[18F]FPhe in comparison to [18F]FET, an established tracer for tumor imaging. Methods: In vitro studies were conducted with MCF-7, PC-3, and U87 MG human tumor cell lines. In vivo µPET studies were conducted in healthy rats with/without the inhibition of peripheral aromatic l-amino acid decarboxylase by benserazide pretreatment (n = 3 each), in mice bearing subcutaneous MCF-7 or PC-3 tumor xenografts (n = 10), and in rats bearing orthotopic U87 MG tumor xenografts (n = 14). Tracer accumulation was quantified by SUVmax, SUVmean and tumor-to-brain ratios (TBrR). Results: The uptake of 3-l-[18F]FPhe in MCF-7 and PC-3 cells was significantly higher relative to [18F]FET. The uptake of all three tracers was significantly reduced by the suppression of amino acid transport systems L or ASC. 3-l-[18F]FPhe but not 3-d-[18F]FPhe exhibited protein incorporation. In benserazide-treated healthy rats, brain uptake after 42–120 min was significantly higher for 3-d-[18F]FPhe vs. 3-l-[18F]FPhe. [18F]FET showed significantly higher uptake into subcutaneous MCF-7 tumors (52–60 min p.i.), while early uptake into orthotopic U87 MG tumors was significantly higher for 3-l-[18F]FPhe (SUVmax: 3-l-[18F]FPhe, 107.6 ± 11.3; 3-d-[18F]FPhe, 86.0 ± 4.3; [18F]FET, 90.2 ± 7.7). Increased tumoral expression of LAT1 and ASCT2 was confirmed immunohistologically. Conclusion: Both novel tracers enable accurate tumor delineation with an imaging quality comparable to [18F]FET.
Collapse
Affiliation(s)
- Felicia Krämer
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Benedikt Gröner
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Chris Hoffmann
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Austin Craig
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
| | - Melanie Brugger
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn-Cologne, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Marco Timmer
- Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.K.); (B.G.); (C.H.); (A.C.); (F.N.); (B.D.Z.); (H.E.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
19
|
Fedorova O, Nadporojskii M, Krasikova R. Enantiomeric purity deviations of radiolabelled amino acids obtained from chiral columns. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Enantiomeric purity (EP) is an important value which denotes the relative percentage of the L-isomer with respect to the D-isomer. For 11C and 18F-labelled amino acid (AA) radiopharmaceutical (RP) production, EP represents a quality control parameter specified in European and national monographs for particular RPs. In most instances, EP value of greater then 90 or 95% (depending on AA type) is required as part of the quality control (QC) value of a RP following radiosynthesis. In common practice, two chromatographic columns are used for the EP determination of RPs: Crownpak CR(+) (Daicel), which contains a crown ether stationary phase or Chirobiotic T (Astec), which contains silica-bound glycoproteins as the stationary phase. The application of column Crownpak CR(+) requires that only perchloric acid solution (with pH 1–2) may be used, as the retention capability of the stationary phase is greatly reduced using organic solvents. This work intends to identify which chromatographic system is more accurate and reliable for EP determination as part of QC. We performed a series of parallel injections of the same batch of the widely used AA RPs [11C]MET and [18F]FET on the two aforementioned columns. The EP determination using column Crownpak CR(+) consistently provided a lower EP value compared to the Chirobiotic T column; the EP deviation between the respective columns was found to range from 2.4–4.0% for the same RP sample. Furthermore, the EP value was influenced by a sample’s dilution factor, e.g. the EP was observed to increase up to 1.5% when the radioactive sample had a fivefold dilution factor. This phenomenon was consistent for both Crownpak CR(+) and Chirobiotic T columns. Finally, a series of standard solutions of non-radioactive methionine with various ratios of L-and D-isomers was analyzed. The data obtained for non-radioactive methionine confirmed that column Crownpak CR(+) incorrectly provided a higher D-enantiomer concentration, whereas Chirobiotic T was found to provide a lower D-enantiomer concentration of the same sample. The deviation from the theoretical EP value was between 0.67 and 1.92%.
Collapse
Affiliation(s)
- Olga Fedorova
- Russian Academy of Science, N.P. Bechtereva Institute of the Human Brain , 9, Pavlov str., 197376 , St. Petersburg , Russia
| | - Michail Nadporojskii
- Russian Scientific Center of Radiology and Surgical Technologies named after A. M. Granov , 70, Leningradskaja str. Pesochny, 197758 , St. Petersburg , Russia
| | - Raisa Krasikova
- Russian Academy of Science, N.P. Bechtereva Institute of the Human Brain , 9, Pavlov str., 197376 , St. Petersburg , Russia
| |
Collapse
|
20
|
Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment. Phys Eng Sci Med 2021; 44:1131-1140. [PMID: 34436751 DOI: 10.1007/s13246-021-01049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Positron emission tomography (PET) imaging using the amino acid tracer O-[2-(18F)fluoroethyl]-L-tyrosine (FET) has gained increased popularity within the past decade in the management of glioblastoma (GBM). Radiomics features extracted from FET PET images may be sensitive to variations when imaging at multiple time points. It is therefore necessary to assess feature robustness to test-retest imaging. Eight patients with histologically confirmed GBM that had undergone post-surgical test-retest FET PET imaging were recruited. In total, 1578 radiomic features were extracted from biological tumour volumes (BTVs) delineated using a semi-automatic contouring method. Feature repeatability was assessed using the intraclass correlation coefficient (ICC). The effect of both bin width and filter choice on feature repeatability was also investigated. 59/106 (55.7%) features from the original image and 843/1472 (57.3%) features from filtered images had an ICC ≥ 0.85. Shape and first order features were most stable. Choice of bin width showed minimal impact on features defined as stable. The Laplacian of Gaussian (LoG, σ = 5 mm) and Wavelet filters (HLL and LHL) significantly improved feature repeatability (p ≪ 0.0001, p = 0.003, p = 0.002, respectively). Correlation of textural features with tumour volume was reported for transparency. FET PET radiomic features extracted from post-surgical images of GBM patients that are robust to test-retest imaging were identified. An investigation with a larger dataset is warranted to validate the findings in this study.
Collapse
|
21
|
Liesche-Starnecker F, Prokop G, Yakushev I, Preibisch C, Delbridge C, Meyer HS, Aftahy K, Barz M, Meyer B, Zimmer C, Schlegel J, Wiestler B, Gempt J. Visualizing cellularity and angiogenesis in newly-diagnosed glioblastoma with diffusion and perfusion MRI and FET-PET imaging. EJNMMI Res 2021; 11:72. [PMID: 34398358 PMCID: PMC8368421 DOI: 10.1186/s13550-021-00817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Combining imaging modalities has become an essential tool for assessment of tumor biology in glioblastoma (GBM) patients. Aim of this study is to understand how tumor cellularity and neovascularization are reflected in O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography ([18F] FET PET) and magnetic resonance imaging (MRI) parameters, including cerebral blood volume (CBV), fractional anisotropy (FA) and mean diffusivity (MD). Methods In this prospective cohort, 162 targeted biopsies of 43 patients with therapy-naïve, isocitrate dehydrogenase (IDH) wildtype GBM were obtained after defining areas of interest based on imaging parameters [18F] FET PET, CBV, FA and MD. Histopathological analysis of cellularity and neovascularization was conducted and results correlated to imaging data. Results ANOVA analysis showed a significant increase of CBV in areas with high neovascularization. For diffusion metrics, and in particular FA, a trend for inverse association with neovascularization was found. [18F] FET PET showed a significant positive correlation to cellularity, while CBV also showed a trend towards correlation with cellularity, not reaching significant levels. In contrast, MD and FA were negatively associated with cellularity. Conclusion Our study confirms that amino acid PET and MR imaging parameters are indicative of histological tumor properties in glioblastoma and highlights the ability of multimodal imaging to assess tumor biology non-invasively.
Collapse
Affiliation(s)
- Friederike Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Georg Prokop
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Hanno S Meyer
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Kaywan Aftahy
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Melanie Barz
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der isar, School of Medicine, Technical University Munich, Munich, Germany.,TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Einsteinstraße 25, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| |
Collapse
|
22
|
Lerche CW, Radomski T, Lohmann P, Caldeira L, Brambilla CR, Tellmann L, Scheins J, Kops ER, Galldiks N, Langen KJ, Herzog H, Jon Shah N. A Linearized Fit Model for Robust Shape Parameterization of FET-PET TACs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1852-1862. [PMID: 33735076 DOI: 10.1109/tmi.2021.3067169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The kinetic analysis of [Formula: see text]-FET time-activity curves (TAC) can provide valuable diagnostic information in glioma patients. The analysis is most often limited to the average TAC over a large tissue volume and is normally assessed by visual inspection or by evaluating the time-to-peak and linear slope during the late uptake phase. Here, we derived and validated a linearized model for TACs of [Formula: see text]-FET in dynamic PET scans. Emphasis was put on the robustness of the numerical parameters and how reliably automatic voxel-wise analysis of TAC kinetics was possible. The diagnostic performance of the extracted shape parameters for the discrimination between isocitrate dehydrogenase (IDH) wildtype (wt) and IDH-mutant (mut) glioma was assessed by receiver-operating characteristic in a group of 33 adult glioma patients. A high agreement between the adjusted model and measured TACs could be obtained and relative, estimated parameter uncertainties were small. The best differentiation between IDH-wt and IDH-mut gliomas was achieved with the linearized model fitted to the averaged TAC values from dynamic FET PET data in the time interval 4-50 min p.i.. When limiting the acquisition time to 20-40 min p.i., classification accuracy was only slightly lower (-3%) and was comparable to classification based on linear fits in this time interval. Voxel-wise fitting was possible within a computation time ≈ 1 min per image slice. Parameter uncertainties smaller than 80% for all fits with the linearized model were achieved. The agreement of best-fit parameters when comparing voxel-wise fits and fits of averaged TACs was very high (p < 0.001).
Collapse
|
23
|
Ferjančič P, Ebert MA, Francis R, Nowak AK, Jeraj R. Repeatability of Quantitative 18F-FET PET in Glioblastoma. Biomed Phys Eng Express 2021; 7. [PMID: 33887712 DOI: 10.1088/2057-1976/abfae9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Purpose: O-(2-[18F]fluoroethyl)-L-tyrosine (FET), a PET radiotracer of amino acid uptake, has shown potential for diagnosis and treatment planning in patients with glioblastoma (GBM). To improve quantitative assessment of FET PET imaging, we evaluated the repeatability of uptake of this tracer in patients with GBM.Methods: Test-retest FET PET imaging was performed on 8 patients with histologically confirmed GBM, who previously underwent surgical resection of the tumour. Data were acquired according to the protocol of a prospective clinical trial validating FET PET as a clinical tool in GBM. SUVmean, SUVmaxand SUV98%metrics were extracted for both test and retest images and used to calculate 95% Bland-Altman limits of agreement (LoA) on lesion-level, as well as on volumes of varying sizes. Impact of healthy brain normalization on repeatability of lesion SUV metrics was evaluated.Results: Tumour LoA were [0.72, 1.46] for SUVmeanand SUVtotal, [0.79,1.23] for SUVmax, and [0.80,1.18] for SUV98%. Healthy brain LoA were [0.80,1.25] for SUVmean, [0.80,1.25] for SUVmax, and [0.81,1.23] for SUV98%. Voxel-level SUV LoA were [0.76, 1.32] for tumour volumes and [0.80, 1.25] for healthy brain. When sampled over maximum volume, SUV LoA were [0.90,1.12] for tumour and [0.92,1.08] for healthy brain. Normalization of uptake using healthy brain volumes was found to improve repeatability, but not after normalization volume size of about 15 cm3.Conclusions Advances in Knowledge and Implications for Patient Care: Repeatability of FET PET is comparable to existing tracers such as FDG and FLT. Healthy brain uptake is slightly more repeatable than uptake of tumour volumes. Repeatability was found to increase with sampled volume. SUV normalization between scans using healthy brain uptake should be performed using volumes at least 15 cm3in size to ensure best imaging repeatability.
Collapse
Affiliation(s)
- Peter Ferjančič
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Martin A Ebert
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, University of Western Australia, Crawley, Western Australia, Australia.,5D Clinics, Perth, Western Australia, Australia
| | - Roslyn Francis
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - Anna K Nowak
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America.,Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Bolcaen J, Descamps B, Deblaere K, De Vos F, Boterberg T, Hallaert G, Van den Broecke C, Vanhove C, Goethals I. Assessment of the effect of therapy in a rat model of glioblastoma using [18F]FDG and [18F]FCho PET compared to contrast-enhanced MRI. PLoS One 2021; 16:e0248193. [PMID: 33667282 PMCID: PMC7935304 DOI: 10.1371/journal.pone.0248193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Objective We investigated the potential of [18F]fluorodeoxyglucose ([18F]FDG) and [18F]Fluoromethylcholine ([18F]FCho) PET, compared to contrast-enhanced MRI, for the early detection of treatment response in F98 glioblastoma (GB) rats. Methods When GB was confirmed on T2- and contrast-enhanced T1-weighted MRI, animals were randomized into a treatment group (n = 5) receiving MRI-guided 3D conformal arc micro-irradiation (20 Gy) with concomitant temozolomide, and a sham group (n = 5). Effect of treatment was evaluated by MRI and [18F]FDG PET on day 2, 5, 9 and 12 post-treatment and [18F]FCho PET on day 1, 6, 8 and 13 post-treatment. The metabolic tumor volume (MTV) was calculated using a semi-automatic thresholding method and the average tracer uptake within the MTV was converted to a standard uptake value (SUV). Results To detect treatment response, we found that for [18F]FDG PET (SUVmean x MTV) is superior to MTV only. Using (SUVmean x MTV), [18F]FDG PET detects treatment effect starting as soon as day 5 post-therapy, comparable to contrast-enhanced MRI. Importantly, [18F]FDG PET at delayed time intervals (240 min p.i.) was able to detect the treatment effect earlier, starting at day 2 post-irradiation. No significant differences were found at any time point for both the MTV and (SUVmean x MTV) of [18F]FCho PET. Conclusions Both MRI and particularly delayed [18F]FDG PET were able to detect early treatment responses in GB rats, whereas, in this study this was not possible using [18F]FCho PET. Further comparative studies should corroborate these results and should also include (different) amino acid PET tracers.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, Department of Nuclear Medicine, National Research Foundation iThemba LABS, Faure, South Africa
- * E-mail:
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Giorgio Hallaert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
25
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|
26
|
Verburg N, Koopman T, Yaqub MM, Hoekstra OS, Lammertsma AA, Barkhof F, Pouwels PJW, Reijneveld JC, Heimans JJ, Rozemuller AJM, Bruynzeel AME, Lagerwaard F, Vandertop WP, Boellaard R, Wesseling P, de Witt Hamer PC. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 2021; 22:412-422. [PMID: 31550353 PMCID: PMC7058442 DOI: 10.1093/neuonc/noz180] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/13/2019] [Indexed: 11/22/2022] Open
Abstract
Background Surgical resection and irradiation of diffuse glioma are guided by standard MRI: T2/fluid attenuated inversion recovery (FLAIR)–weighted MRI for non-enhancing and T1-weighted gadolinium-enhanced (T1G) MRI for enhancing gliomas. Amino acid PET has been suggested as the new standard. Imaging combinations may improve standard MRI and amino acid PET. The aim of the study was to determine the accuracy of imaging combinations to detect glioma infiltration. Methods We included 20 consecutive adults with newly diagnosed non-enhancing glioma (7 diffuse astrocytomas, isocitrate dehydrogenase [IDH] mutant; 1 oligodendroglioma, IDH mutant and 1p/19q codeleted; 1 glioblastoma IDH wildtype) or enhancing glioma (glioblastoma, 9 IDH wildtype and 2 IDH mutant). Standardized preoperative imaging (T1-, T2-, FLAIR-weighted, and T1G MRI, perfusion and diffusion MRI, MR spectroscopy and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET) was co-localized with multiregion stereotactic biopsies preceding resection. Tumor presence in the biopsies was assessed by 2 neuropathologists. Diagnostic accuracy was determined using receiver operating characteristic analysis. Results A total of 174 biopsies were obtained (63 from 9 non-enhancing and 111 from 11 enhancing gliomas), of which 129 contained tumor (50 from non-enhancing and 79 from enhancing gliomas). In enhancing gliomas, the combination of apparent diffusion coefficient (ADC) with [18F]FET PET (area under the curve [AUC], 95% CI: 0.89, 0.79‒0.99) detected tumor better than T1G MRI (0.56, 0.39‒0.72; P < 0.001) and [18F]FET PET (0.76, 0.66‒0.86; P = 0.001). In non-enhancing gliomas, no imaging combination detected tumor significantly better than standard MRI. FLAIR-weighted MRI had an AUC of 0.81 (0.65–0.98) compared with 0.69 (0.56–0.81; P = 0.019) for [18F]FET PET. Conclusion Combining ADC and [18F]FET PET detects glioma infiltration better than standard MRI and [18F]FET PET in enhancing gliomas, potentially enabling better guidance of local therapy.
Collapse
Affiliation(s)
- Niels Verburg
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands.,Neurosurgical Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Thomas Koopman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands
| | - Maqsood M Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands.,University College London Institute of Neurology and Healthcare Engineering, London, UK
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands
| | - Jaap C Reijneveld
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands.,Department of Neurology, Amsterdam UMC, VUmc, Amsterdam, Netherlands
| | - Jan J Heimans
- Department of Neurology, Amsterdam UMC, VUmc, Amsterdam, Netherlands
| | | | | | - Frank Lagerwaard
- Department of Radiotherapy, Amsterdam UMC, VUmc, Amsterdam, Netherlands
| | - William P Vandertop
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands.,Neurosurgical Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands
| | - Pieter Wesseling
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands.,Neurosurgical Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.,Department of Pathology, Amsterdam UMC, VUmc, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology and Department of Pathology, UMC Utrecht, Utrecht, Netherlands
| | - Philip C de Witt Hamer
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands.,Neurosurgical Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
27
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Stegmayr C, Stoffels G, Filß C, Heinzel A, Lohmann P, Willuweit A, Ermert J, Coenen HH, Mottaghy FM, Galldiks N, Langen KJ. Current trends in the use of O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET) in neurooncology. Nucl Med Biol 2021; 92:78-84. [PMID: 32113820 DOI: 10.1016/j.nucmedbio.2020.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
The diagnostic potential of PET using the amino acid analogue O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in brain tumor diagnostics has been proven in many studies during the last two decades and is still the subject of multiple studies every year. In addition to standard magnetic resonance imaging (MRI), positron emission tomography (PET) using [18F]FET provides important diagnostic data concerning brain tumor delineation, therapy planning, treatment monitoring, and improved differentiation between treatment-related changes and tumor recurrence. The pharmacokinetics, uptake mechanisms and metabolism have been well described in various preclinical studies. The accumulation of [18F]FET in most benign lesions and healthy brain tissue has been shown to be low, thus providing a high contrast between tumor tissue and benign tissue alterations. Based on logistic advantages of F-18 labelling and convincing clinical results, [18F]FET has widely replaced short lived amino acid tracers such as L-[11C]methyl-methionine ([11C]MET) in many centers across Western Europe. This review summarizes the basic knowledge on [18F]FET and its contribution to the care of patients with brain tumors. In particular, recent studies about specificity, possible pitfalls, and the utility of [18F]FET PET in tumor grading and prognostication regarding the revised WHO classification of brain tumors are addressed.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Christian Filß
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Heinz H Coenen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M Mottaghy
- Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany.
| |
Collapse
|
29
|
Lohmann P, Elahmadawy MA, Gutsche R, Werner JM, Bauer EK, Ceccon G, Kocher M, Lerche CW, Rapp M, Fink GR, Shah NJ, Langen KJ, Galldiks N. FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation. Cancers (Basel) 2020; 12:cancers12123835. [PMID: 33353180 PMCID: PMC7766151 DOI: 10.3390/cancers12123835] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Following chemoradiation with alkylating agents in glioma patients, structural magnetic resonance imaging (MRI) may suggest tumor progression which subsequently improves during the course of the disease without any treatment change. This phenomenon has been termed pseudoprogression. Despite advances in medical imaging, a reliable diagnosis of pseudoprogression remains a challenging task. Radiomics is a subdiscipline of artificial intelligence and allows the identification and extraction of imaging features from various routine imaging modalities. These features can be used for the generation of mathematical models to improve diagnostics in patients with brain tumors. The present study highlights the potential of radiomics obtained from amino acid positron emission tomography (PET) for the diagnosis of pseudoprogression. In 34 patients with suspicious MRI early after chemoradiation completion, our radiomics model correctly identified all patients with pseudoprogression. Abstract Currently, a reliable diagnostic test for differentiating pseudoprogression from early tumor progression is lacking. We explored the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) radiomics for this clinically important task. Thirty-four patients (isocitrate dehydrogenase (IDH)-wildtype glioblastoma, 94%) with progressive magnetic resonance imaging (MRI) changes according to the Response Assessment in Neuro-Oncology (RANO) criteria within the first 12 weeks after completing temozolomide chemoradiation underwent a dynamic FET PET scan. Static and dynamic FET PET parameters were calculated. For radiomics analysis, the number of datasets was increased to 102 using data augmentation. After randomly assigning patients to a training and test dataset, 944 features were calculated on unfiltered and filtered images. The number of features for model generation was limited to four to avoid data overfitting. Eighteen patients were diagnosed with early tumor progression, and 16 patients had pseudoprogression. The FET PET radiomics model correctly diagnosed pseudoprogression in all test cohort patients (sensitivity, 100%; negative predictive value, 100%). In contrast, the diagnostic performance of the best FET PET parameter (TBRmax) was lower (sensitivity, 81%; negative predictive value, 80%). The results suggest that FET PET radiomics helps diagnose patients with pseudoprogression with a high diagnostic performance. Given the clinical significance, further studies are warranted.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence:
| | - Mai A. Elahmadawy
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Nuclear Medicine, National Cancer Institute (NCI), Cairo University, 11796 Cairo, Egypt
| | - Robin Gutsche
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- RWTH Aachen University, 52062 Aachen, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.-M.W.); (E.K.B.); (G.C.)
| | - Elena K. Bauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.-M.W.); (E.K.B.); (G.C.)
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.-M.W.); (E.K.B.); (G.C.)
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
| | - Christoph W. Lerche
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
| | - Marion Rapp
- Department of Neurosurgery, University of Duesseldorf, 40255 Duesseldorf, Germany;
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.-M.W.); (E.K.B.); (G.C.)
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- JARA-BRAIN-Translational Medicine, 52074 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4, -11), Research Center Juelich, 52425 Juelich, Germany; (M.A.E.); (R.G.); (M.K.); (C.W.L.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.-M.W.); (E.K.B.); (G.C.)
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
| |
Collapse
|
30
|
Abstract
The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.
Collapse
|
31
|
Abstract
OBJECTIVE. Diagnosing brain tumor recurrence, especially with changes that occur after treatment, is a challenge. MRI has an exceptional structural resolution, which is important from the perspective of treatment planning. However, its reliability in diagnosing recurrence is relatively lower, when compared to metabolic imaging. The latter is more sensitive to the early changes associated with recurrence and relatively immune to confounding by treatment related changes. CONCLUSION. There is no one-stop shop for the diagnosis of recurrence in brain tumors. The sensitivity of metabolic imaging is not a substitute for the resolution of the MRI, making a multi-modal approach the only way forward.
Collapse
|
32
|
Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, Law I, Le Rhun E, Chang S, Schwarting J, Combs SE, Preusser M, Forsyth P, Pope W, Weller M, Tonn JC. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 2020; 21:585-595. [PMID: 30615138 DOI: 10.1093/neuonc/noz003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/11/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Brain metastases (BM) from extracranial cancer are associated with significant morbidity and mortality. Effective local treatment options are stereotactic radiotherapy, including radiosurgery or fractionated external beam radiotherapy, and surgical resection. The use of systemic treatment for intracranial disease control also is improving. BM diagnosis, treatment planning, and follow-up is most often based on contrast-enhanced magnetic resonance imaging (MRI). However, anatomic imaging modalities including standard MRI have limitations in accurately characterizing posttherapeutic reactive changes and treatment response. Molecular imaging techniques such as positron emission tomography (PET) characterize specific metabolic and cellular features of metastases, potentially providing clinically relevant information supplementing anatomic MRI. Here, the Response Assessment in Neuro-Oncology working group provides recommendations for the use of PET imaging in the clinical management of patients with BM based on evidence from studies validated by histology and/or clinical outcome.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Marc Chamberlain
- Departments of Neurology and Neurological Surgery, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Lille, Lille, France
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Julian Schwarting
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University Munich, Munich, Germany
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Forsyth
- Moffitt Cancer Center, University of South Florida, Tampa, Florida, USA
| | - Whitney Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California , USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| |
Collapse
|
33
|
Ponisio MR, McConathy JE, Dahiya SM, Miller-Thomas MM, Rich KM, Salter A, Wang Q, LaMontagne PJ, Guzmán Pérez-Carrillo GJ, Benzinger TLS. Dynamic 18F-FDOPA-PET/MRI for the preoperative evaluation of gliomas: correlation with stereotactic histopathology. Neurooncol Pract 2020; 7:656-667. [PMID: 33312679 DOI: 10.1093/nop/npaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background MRI alone has limited accuracy for delineating tumor margins and poorly predicts the aggressiveness of gliomas, especially when tumors do not enhance. This study evaluated simultaneous 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine (FDOPA)-PET/MRI to define tumor volumes compared to MRI alone more accurately, assessed its role in patient management, and correlated PET findings with histopathology. Methods Ten patients with known or suspected gliomas underwent standard of care surgical resection and/or stereotactic biopsy. FDOPA-PET/MRI was performed prior to surgery, allowing for precise co-registration of PET, MR, and biopsies. The biopsy sites were modeled as 5-mm spheres, and the local FDOPA uptake at each site was determined. Correlations were performed between measures of tumor histopathology, and static and dynamic PET values: standardized uptake values (SUVs), tumor to brain ratios, metabolic tumor volumes, and tracer kinetics at volumes of interest (VOIs) and biopsy sites. Results Tumor FDOPA-PET uptake was visualized in 8 patients. In 2 patients, tracer uptake was similar to normal brain reference with no histological findings of malignancy. Eight biopsy sites confirmed for glioma had FDOPA uptake without T1 contrast enhancement. The PET parameters were highly correlated only with the cell proliferation marker, Ki-67 (SUVmax: r = 0.985, P = .002). In this study, no statistically significant difference between high-grade and low-grade tumors was demonstrated. The dynamic PET analysis of VOIs and biopsy sites showed decreasing time-activity curves patterns. FDOPA-PET imaging directly influenced patient management. Conclusions Simultaneous FDOPA-PET/MRI allowed for more accurate visualization and delineation of gliomas, enabling more appropriate patient management and simplified validation of PET findings with histopathology.
Collapse
Affiliation(s)
- Maria R Ponisio
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Jonathan E McConathy
- Department of Radiology, Division of Molecular Imaging and Therapeutics, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sonika M Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Michelle M Miller-Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Keith M Rich
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri
| | - Amber Salter
- Department of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Pamela J LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | | | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
34
|
Choi CH, Stegmayr C, Shymanskaya A, Worthoff WA, da Silva NA, Felder J, Langen KJ, Shah NJ. An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Phys 2020; 7:50. [PMID: 32728773 PMCID: PMC7391464 DOI: 10.1186/s40658-020-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models. Methods In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET. Results High-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy. Conclusions The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | | | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Nuno A da Silva
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-BRAIN, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany. .,Institute of Neuroscience and Medicine-11, INM-11, JARA, Forschungszentrum Jülich, Germany. .,JARA-BRAIN-Translational Medicine, Aachen, Germany. .,Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
35
|
Jaber M, Ewelt C, Wölfer J, Brokinkel B, Thomas C, Hasselblatt M, Grauer O, Stummer W. Is Visible Aminolevulinic Acid-Induced Fluorescence an Independent Biomarker for Prognosis in Histologically Confirmed (World Health Organization 2016) Low-Grade Gliomas? Neurosurgery 2020; 84:1214-1224. [PMID: 30107580 PMCID: PMC6537633 DOI: 10.1093/neuros/nyy365] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/14/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Approximately 20% of low-grade gliomas (LGG) display visible protoporphyrin fluorescence during surgery after 5-aminolevulinic acid (5-ALA) administration. OBJECTIVE To determine if fluorescence represents a prognostic marker in LGG. METHODS Seventy-four consecutive patients with LGG (World Health Organization 2016) were operated on with 5-ALA. Fluorescent tissue was specifically biopsied. Tumor size, age, Karnofsky index, contrast-enhancement, fluorescence, and molecular factors (IDH1/IDH2-mutations, Ki67/MIB1 Index, 1p19q codeletions, ATRX, EGFR, p53 expression, and O6-methylguanine DNA methyltransferase promotor methylation), were related to progression-free survival (PFS), malignant transformation-free survival (MTFS) and overall survival (OS). RESULTS Sixteen of seventy-four LGGs (21.6%) fluoresced. Fluorescence was partially related to weak enhancement on magnetic resonance imaging and increased (positron emission tomography)PET-FET uptake, but not to Karnofsky Performance Score, tumor size, or age. Regarding molecular markers, only EGFR expression differed marginally (fluorescing vs nonfluorescing: 19% vs 5%; P = .057). Median follow-up was 46.4 mo (95% confidence interval [CI]: 41.8-51.1). PFS, MTFS, and OS were shorter in fluorescing tumors (PFS: median 9.8 mo, 95% CI: 1.00-27.7 vs 45.8, 31.9-59.7, MTFS: 43.0 [27.5-58.5] vs 64.6 [57.7-71.5], median not reached, P = .015; OS: 51.6, [34.8-68.3] vs [68.2, 62.7-73.8], P = .002). IDH mutations significantly predicted PFS, MTFS, and OS. In multivariate analysis IDH status and fluorescence both independently predicted MTFS and OS. PFS was not independently predicted by fluorescence. CONCLUSION This is the first report investigating the role of ALA-induced fluorescence in histologically confirmed LGG. Fluorescence appeared to be a marker for inherent malignant transformation and OS, independently of known prognostic markers. Fluorescence in LGG might be taken into account when deciding on adjuvant therapies.
Collapse
Affiliation(s)
- Mohammed Jaber
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
36
|
Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules 2020; 25:E1471. [PMID: 32213992 PMCID: PMC7146177 DOI: 10.3390/molecules25061471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.
Collapse
Affiliation(s)
- Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| |
Collapse
|
37
|
18F-FET PET for Diagnosis of Pseudoprogression of Brain Metastases in Patients With Non-Small Cell Lung Cancer. Clin Nucl Med 2020; 45:113-117. [PMID: 31876831 DOI: 10.1097/rlu.0000000000002890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate whether F-fluoroethyltyrosine (FET) PET can discriminate progression from pseudoprogression of brain metastases in patients with non-small cell lung cancer undergoing immunotherapy and radiotherapy to the brain. METHODS Retrospective analysis of F-FET PET scans in cases with documented progression of brain metastases on MRI in a cohort of 53 patients with non-small cell lung cancer receiving immune-checkpoint inhibitors and radiotherapy of brain metastases at the University Hospital of Zürich from June 2015 until January 2019. Response to radiotherapy was assessed by MRI. In case of equivocal findings and/or radiological progression in clinically asymptomatic patients, further assessment with F-FET PET was performed. RESULTS From the cohort of 53 patients, the restaging MRI showed in 30 patients (56.6%) progression of at least 1 treated metastasis. Thereof, F-FET PET was performed in 11 patients, based on the absence of neurological symptoms or presence of systemic response and physicians' decision. F-FET PET correctly identified pseudoprogression in 9 of 11 patients (81.8%). In patients who did not undergo F-FET PET, 5 of 19 (26.3%) were diagnosed with pseudoprogression. CONCLUSIONS Pseudoprogression of brain metastases occurred in 50% of patients diagnosed with progression on MRI. F-FET PET may help differentiate pseudoprogression from real progression in order to avoid discontinuation of effective therapy or unneeded interventions.
Collapse
|
38
|
Evangelista L, Cuppari L, Bellu L, Bertin D, Caccese M, Reccia P, Zagonel V, Lombardi G. Comparison Between 18F-Dopa and 18F-Fet PET/CT in Patients with Suspicious Recurrent High Grade Glioma: A Literature Review and Our Experience. Curr Radiopharm 2020; 12:220-228. [PMID: 30644351 DOI: 10.2174/1874471012666190115124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
PURPOSES The aims of the present study were to: 1- critically assess the utility of L-3,4- dihydroxy-6-18Ffluoro-phenyl-alanine (18F-DOPA) and O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) Positron Emission Tomography (PET)/Computed Tomography (CT) in patients with high grade glioma (HGG) and 2- describe the results of 18F-DOPA and 18F-FET PET/CT in a case series of patients with recurrent HGG. METHODS We searched for studies using the following databases: PubMed, Web of Science and Scopus. The search terms were: glioma OR brain neoplasm and DOPA OR DOPA PET OR DOPA PET/CT and FET OR FET PET OR FET PET/CT. From a mono-institutional database, we retrospectively analyzed the 18F-DOPA and 18F-FET PET/CT of 29 patients (age: 56 ± 12 years) with suspicious for recurrent HGG. All patients underwent 18F-DOPA or 18F-FET PET/CT for a multidisciplinary decision. The final definition of recurrence was made by magnetic resonance imaging (MRI) and/or multidisciplinary decision, mainly based on the clinical data. RESULTS Fifty-one articles were found, of which 49 were discarded, therefore 2 studies were finally selected. In both the studies, 18F-DOPA and 18F-FET as exchangeable in clinical practice particularly for HGG patients. From our institutional experience, in 29 patients, we found that sensitivity, specificity and accuracy of 18F-DOPA PET/CT in HGG were 100% (95% confidence interval- 95%CI - 81-100%), 63% (95%CI: 39-82%) and 62% (95%CI: 39-81%), respectively. 18F-FET PET/CT was true positive in 4 and true negative in 4 patients. Sensitivity, specificity and accuracy for 18F-FET PET/CT in HGG were 100%. CONCLUSION 18F-DOPA and 18F-FET PET/CT have a similar diagnostic accuracy in patients with recurrent HGG. However, 18F-DOPA PET/CT could be affected by inflammation conditions (false positive) that can alter the final results. Large comparative trials are warranted in order to better understand the utility of 18F-DOPA or 18F-FET PET/CT in patients with HGG.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lea Cuppari
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Luisa Bellu
- Radiation Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Daniele Bertin
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Mario Caccese
- Oncology 1 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Pasquale Reccia
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Vittorina Zagonel
- Oncology 1 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giuseppe Lombardi
- Oncology 1 Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
39
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Lisova K, Chen BY, Wang J, Fong KMM, Clark PM, van Dam RM. Rapid, efficient, and economical synthesis of PET tracers in a droplet microreactor: application to O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET). EJNMMI Radiopharm Chem 2019; 5:1. [PMID: 31893318 PMCID: PMC6938530 DOI: 10.1186/s41181-019-0082-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Conventional scale production of small batches of PET tracers (e.g. for preclinical imaging) is an inefficient use of resources. Using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), we demonstrate that simple microvolume radiosynthesis techniques can improve the efficiency of production by consuming tiny amounts of precursor, and maintaining high molar activity of the tracers even with low starting activity. PROCEDURES The synthesis was carried out in microvolume droplets manipulated on a disposable patterned silicon "chip" affixed to a heater. A droplet of [18F]fluoride containing TBAHCO3 was first deposited onto a chip and dried at 100 °C. Subsequently, a droplet containing 60 nmol of precursor was added to the chip and the fluorination reaction was performed at 90 °C for 5 min. Removal of protecting groups was accomplished with a droplet of HCl heated at 90 °C for 3 min. Finally, the crude product was collected in a methanol-water mixture, purified via analytical-scale radio-HPLC and formulated in saline. As a demonstration, using [18F]FET produced on the chip, we prepared aliquots with different molar activities to explore the impact on preclinical PET imaging of tumor-bearing mice. RESULTS The microdroplet synthesis exhibited an overall decay-corrected radiochemical yield of 55 ± 7% (n = 4) after purification and formulation. When automated, the synthesis could be completed in 35 min. Starting with < 370 MBq of activity, ~ 150 MBq of [18F]FET could be produced, sufficient for multiple in vivo experiments, with high molar activities (48-119 GBq/μmol). The demonstration imaging study revealed the uptake of [18F]FET in subcutaneous tumors, but no significant differences in tumor uptake as a result of molar activity differences (ranging 0.37-48 GBq/μmol) were observed. CONCLUSIONS A microdroplet synthesis of [18F]FET was developed demonstrating low reagent consumption, high yield, and high molar activity. The approach can be expanded to tracers other than [18F]FET, and adapted to produce higher quantities of the tracer sufficient for clinical PET imaging.
Collapse
Affiliation(s)
- Ksenia Lisova
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bao Ying Chen
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jia Wang
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kelly Mun-Ming Fong
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter M Clark
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Michael van Dam
- Physics in Biology and Medicine Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Verhoeven J, Baguet T, Piron S, Pauwelyn G, Bouckaert C, Descamps B, Raedt R, Vanhove C, De Vos F, Goethals I. 2-[ 18F]FELP, a novel LAT1-specific PET tracer, for the discrimination between glioblastoma, radiation necrosis and inflammation. Nucl Med Biol 2019; 82-83:9-16. [PMID: 31841816 DOI: 10.1016/j.nucmedbio.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Considering the need for rapid change of treatment in recurrent glioblastoma (GB), it is of utmost importance to characterize PET radiopharmaceuticals that allow early discrimination of tumor from therapy-related effects. In this study, we examined the value of 2-[18F]FELP as a LAT1 tumor-specific PET tracer in comparison with [18F]FDG and [18F]FET in a combined orthotopic rat radiation necrosis and glioblastoma model. A second experiment compared 2-[18F]FELP to [18F]FDG in a mouse glioblastoma - inflammation model. METHODS Using the small animal radiation research platform (SARRP), radiation necrosis (RN) was induced in the left frontal lobe of the rat brain. When radiation-induced changes were visible on MRI, F98 rat glioblastoma cells were stereotactically inoculated in the contralateral right frontal lobe. When tumor growth was confirmed on MRI, 2-[18F]FELP, [18F]FET and [18F]FDG PET scans were acquired on three consecutive days. In an inflammation experiment, mice were inoculated in the left thigh with U87 human glioblastoma cells. After heterotopic tumor growth was confirmed macroscopically, inflammation was induced by injection of turpentine subcutaneously in the right thigh. Subsequently, 2-[18F]FELP and [18F]FDG scans were acquired on two consecutive days. RESULTS The in vivo PET images demonstrated that 2-[18F]FELP could differentiate glioblastoma and radiation necrosis using SUVmean (p = 0.0016) and LNRmean (p = 0.009), while [18F]FET was only able to differentiate both lesions by means of the SUVmean. (p = 0.047) Delayed [18F]FDGlate PET (4 h postinjection) was also able to distinguish glioblastoma from radiation necrosis, but smaller lesion-to-normal brain ratios were observed (SUVmean: p = 0.009; LNRmean: p = 0.028). In the inflammation study, 2-[18F]FELP showed no significant uptake in the inflammation lesion when compared to the control group (SUVmean: p = 0.149; LNRmean: p = 0.083). In contrast, both conventional and delayed [18F]FDG displayed significant uptake in the turpentine-invoked lesion (SUVmean: p = 0.021; LNRmean: p = 0.021). CONCLUSION This study suggests that the 2-[18F]FELP PET is able to differentiate glioblastoma from radiation necrosis and that the 2-[18F]FELP uptake is less likely to be contaminated by the presence of inflammation than the [18F]FDG signal. ADVANCES IN KNOWLEDGE These results are clinically relevant for the differential diagnosis between tumor and radiation necrosis because radiation necrosis always contains a certain amount of inflammatory cells. Hence, 2-[18F]FELP is preferred to discriminate tumor from radiation necrosis.
Collapse
Affiliation(s)
| | - Tristan Baguet
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Sarah Piron
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Glenn Pauwelyn
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Charlotte Bouckaert
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University Hospital, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University Hospital, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
Nozaki S, Nakatani Y, Mawatari A, Shibata N, Hume WE, Hayashinaka E, Wada Y, Doi H, Watanabe Y. 18F-FIMP: a LAT1-specific PET probe for discrimination between tumor tissue and inflammation. Sci Rep 2019; 9:15718. [PMID: 31673030 PMCID: PMC6823354 DOI: 10.1038/s41598-019-52270-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Positron emission tomography (PET) imaging can assist in the early-phase diagnostic and therapeutic evaluation of tumors. Here, we report the radiosynthesis, small animal PET imaging, and biological evaluation of a L-type amino acid transporter 1 (LAT1)-specific PET probe, 18F-FIMP. This probe demonstrates increased tumor specificity, compared to existing tumor-specific PET probes (18F-FET, 11C-MET, and 18F-FDG). Evaluation of probes by in vivo PET imaging, 18F-FIMP showed intense accumulation in LAT1-positive tumor tissues, but not in inflamed lesions, whereas intense accumulation of 18F-FDG was observed in both tumor tissues and in inflamed lesions. Metabolite analysis showed that 18F-FIMP was stable in liver microsomes, and mice tissues (plasma, urine, liver, pancreas, and tumor). Investigation of the protein incorporation of 18F-FIMP showed that it was not incorporated into protein. Furthermore, the expected mean absorbed dose of 18F-FIMP in humans was comparable or slightly higher than that of 18F-FDG and indicated that 18F-FIMP may be a safe PET probe for use in humans. 18F-FIMP may provide improved specificity for tumor diagnosis, compared to 18F-FDG, 18F-FET, and 11C-MET. This probe may be suitable for PET imaging for glioblastoma and the early-phase monitoring of cancer therapy outcomes.
Collapse
Affiliation(s)
- Satoshi Nozaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan.,Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Hyogo, 650-0047, Japan
| | - Yuka Nakatani
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Nina Shibata
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - William E Hume
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Hyogo, 650-0047, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research and Center for Life Science Technologies, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
43
|
A fully automated azeotropic drying free synthesis of O-(2-[18F]fluoroethyl)- -tyrosine ([18F]FET) using tetrabutylammonium tosylate. Appl Radiat Isot 2019; 152:135-139. [DOI: 10.1016/j.apradiso.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/22/2019] [Accepted: 07/03/2019] [Indexed: 02/03/2023]
|
44
|
Puranik AD, Boon M, Purandare N, Rangarajan V, Gupta T, Moiyadi A, Shetty P, Sridhar E, Agrawal A, Dev I, Shah S. Utility of FET-PET in detecting high-grade gliomas presenting with equivocal MR imaging features. World J Nucl Med 2019; 18:266-272. [PMID: 31516370 PMCID: PMC6714153 DOI: 10.4103/wjnm.wjnm_89_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High-grade gliomas, metastases, and primary central nervous system lymphoma (PCNSL) are common high-grade brain lesions, which may have overlapping features on magnetic resonance (MR) imaging. Our objective was to assess the utility of 18-fluoride-fluoro-ethyl-tyrosine positron emission tomography (FET-PET) in reliably differentiating between these lesions, by studying their metabolic characteristics. Patients with high-grade brain lesions suspicious for glioma, with overlapping features for metastases and PCNSL were referred for FET-PET by Neuroradiologists from Multidisciplinary Neuro-Oncology Joint Clinic. Tumor-to-contralateral white mater ratio (T/Wm) at 5 and 20 min was derived and compared to histopathology. Receiver operating characteristic curve analysis was used to find the optimal T/Wm cutoff to differentiate between the tumor types. T/Wm was higher for glial tumors compared to nonglial tumors (metastases, PCNSL, tuberculoma, and anaplastic meningioma). A cutoff of 1.9 was derived to reliably diagnose a tumor of glial origin with a sensitivity and specificity of 93.8% and 91%, respectively. FET-PET can be used to diagnose glial tumors presenting as high-grade brain lesions when MR findings show overlapping features for other common high-grade lesions.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Mathew Boon
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Nilendu Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Epari Sridhar
- Department of Pathology, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Indraja Dev
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National University, Mumbai, Maharashtra, India
| |
Collapse
|
45
|
Shooli H, Dadgar H, Wáng YXJ, Vafaee MS, Kashuk SR, Nemati R, Jafari E, Nabipour I, Gholamrezanezhad A, Assadi M, Larvie M. An update on PET-based molecular imaging in neuro-oncology: challenges and implementation for a precision medicine approach in cancer care. Quant Imaging Med Surg 2019; 9:1597-1610. [PMID: 31667145 PMCID: PMC6785513 DOI: 10.21037/qims.2019.08.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
PET imaging using novel radiotracers show promises for tumor grading and molecular characterization through visualizing molecular and functional properties of the tumors. Application of PET tracers in brain neoplasm depends on both type of the neoplasm and the research or clinical significance required to be addressed. In clinical neuro-oncology, 18F-FDG is used mainly to differentiate tumor recurrence from radiation-induced necrosis, and novel PET agents show attractive imaging properties. Novel PET tracers can offer biologic information not visible via contrast-enhanced MRI or 18F-FDG PET. This review aims to provide an update on the complementary role of PET imaging in neuro-oncology both in research and clinical settings along with presenting interesting cases in this context.
Collapse
Affiliation(s)
- Hossein Shooli
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Yì-Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Manochehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Translational Neuroscience, BRIDGE, University of Southern Denmark, Odense, Denmark
- Neuroscience Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Rassaei Kashuk
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
46
|
Sinigaglia M, Assi T, Besson FL, Ammari S, Edjlali M, Feltus W, Rozenblum-Beddok L, Zhao B, Schwartz LH, Mokrane FZ, Dercle L. Imaging-guided precision medicine in glioblastoma patients treated with immune checkpoint modulators: research trend and future directions in the field of imaging biomarkers and artificial intelligence. EJNMMI Res 2019; 9:78. [PMID: 31432278 PMCID: PMC6702257 DOI: 10.1186/s13550-019-0542-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Immunotherapies that employ immune checkpoint modulators (ICMs) have emerged as an effective treatment for a variety of solid cancers, as well as a paradigm shift in the treatment of cancers. Despite this breakthrough, the median survival time of glioblastoma patients has remained at about 2 years. Therefore, the safety and anti-cancer efficacy of combination therapies that include ICMs are being actively investigated. Because of the distinct mechanisms of ICMs, which restore the immune system’s anti-tumor capacity, unconventional immune-related phenomena are increasingly being reported in terms of tumor response and progression, as well as adverse events. Indeed, immunotherapy response assessments for neuro-oncology (iRANO) play a central role in guiding cancer patient management and define a “wait and see strategy” for patients treated with ICMs in monotherapy with progressive disease on MRI. This article deciphers emerging research trends to ameliorate four challenges unaddressed by the iRANO criteria: (1) patient selection, (2) identification of immune-related phenomena other than pseudoprogression (i.e., hyperprogression, the abscopal effect, immune-related adverse events), (3) response assessment in combination therapies including ICM, and (4) alternatives to MRI. To this end, our article provides a structured approach for standardized selection and reporting of imaging modalities to enable the use of precision medicine by deciphering the characteristics of the tumor and its immune environment. Emerging preclinical or clinical innovations are also discussed as future directions such as immune-specific targeting and implementation of artificial intelligence algorithms.
Collapse
Affiliation(s)
- Mathieu Sinigaglia
- Department of Imaging Nuclear Medicine, Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Tarek Assi
- Département de médecine oncologique, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Florent L Besson
- Department of Biophysics and Nuclear Medicine, Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, 78 rue du Général Leclerc, 94275, Le Kremlin-Bicêtre, France.,IR4M-UMR 8081, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Samy Ammari
- Département d'imagerie médicale, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Myriam Edjlali
- INSERM U894, Service d'imagerie morphologique et fonctionnelle, Hôpital Sainte-Anne, Université Paris Descartes, 1, rue Cabanis, 75014, Paris, France
| | - Whitney Feltus
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Laura Rozenblum-Beddok
- Service de Médecine Nucléaire, AP-HP, Hôpital La Pitié-Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA
| | - Fatima-Zohra Mokrane
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA.,Département d'imagerie médicale, CHU Rangueil, Université Toulouse Paul Sabatier, Toulouse, France
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, New York, NY, 10039, USA. .,UMR1015, Institut Gustave Roussy, Université Paris Saclay, 94800, Villejuif, France.
| |
Collapse
|
47
|
Influence of Dexamethasone on O-(2-[ 18F]-Fluoroethyl)-L-Tyrosine Uptake in the Human Brain and Quantification of Tumor Uptake. Mol Imaging Biol 2019; 21:168-174. [PMID: 29845426 DOI: 10.1007/s11307-018-1221-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) is an established positron emission tomography (PET) tracer for brain tumor imaging. This study explores the influence of dexamethasone therapy on [18F]FET uptake in the normal brain and its influence on the maximum and mean tumor-to-brain ratio (TBR). PROCEDURES [18F]FET PET scans of 160 brain tumor patients were evaluated (80 dexamethasone treated, 80 untreated; each group with 40 men/40 women). The standardized uptake value of [18F]FET uptake in the normal brain (SUVbrain) in the different groups was compared. Nine patients were examined repeatedly with and without dexamethasone therapy. RESULTS SUVbrain of [18F]FET uptake was significantly higher in dexamethasone-treated patients than in untreated patients (SUVbrain 1.33 ± 0.1 versus 1.06 ± 0.16 in male and 1.45 ± 0.25 versus 1.31 ± 0.28 in female patients). Similar results were observed in patients with serial PET scans. Furthermore, compared to men, a significantly higher SUVbrain was found in women, both with and without dexamethasone treatment. There were no significant differences between the different groups for TBRmax and TBRmean, which could have been masked by the high standard deviation. In a patient with a stable brain metastasis investigated twice with and without dexamethasone, the TBRmax and the biological tumor volume (BTV) decreased considerably after dexamethasone due to an increased SUVbrain. CONCLUSION Dexamethasone treatment appears to increase the [18F]FET uptake in the normal brain. An effect on TBRmax, TBRmean, and BTV cannot be excluded which should be considered especially for treatment monitoring and the estimation of BTV using [18F]FET PET.
Collapse
|
48
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
49
|
Investigation of cis-4-[ 18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment. Mol Imaging Biol 2019; 20:1035-1043. [PMID: 29687323 DOI: 10.1007/s11307-018-1197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Cis-4-[18F]fluoro-D-proline (D-cis-[18F]FPro) has been shown to pass the intact blood-brain barrier and to accumulate in areas of secondary neurodegeneration and necrosis in the rat brain while uptake in experimental brain tumors is low. This pilot study explores the uptake behavior of D-cis-[18F]FPro in human brain tumors after multimodal treatment. PROCEDURES In a prospective study, 27 patients with suspected recurrent brain tumor after treatment with surgery, radiotherapy, and/or chemotherapy (SRC) were investigated by dynamic positron emission tomography (PET) using D-cis-[18F]FPro (22 high-grade gliomas, one unspecified glioma, and 4 metastases). Furthermore, two patients with untreated lesions were included (one glioblastoma, one reactive astrogliosis). Data were compared with the results of PET using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) which detects viable tumor tissue. Tracer distribution, mean and maximum lesion-to-brain ratios (LBRmean, LBRmax), and time-to-peak (TTP) of the time activity curve (TAC) of tracer uptake were evaluated. Final diagnosis was determined by histology (n = 9), clinical follow-up (n = 10), or by [18F]FET PET (n = 10). RESULTS D-cis-[18F]FPro showed high uptake in both recurrent brain tumors (n = 11) and lesions classified as treatment-related changes (TRC) only (n = 16) (LBRmean 2.2 ± 0.7 and 2.1 ± 0.6, n.s.; LBRmax 3.4 ± 1.2 and 3.2 ± 1.3, n.s.). The untreated glioblastoma and the lesion showing reactive astrogliosis exhibited low D-cis-[18F]FPro uptake. Distribution of [18F]FET and D-cis-[18F]FPro uptake was discordant in 21/29 cases indicating that the uptake mechanisms are different. CONCLUSION The high accumulation of D-cis-[18F]FPro in pretreated brain tumors and TRC supports the hypothesis that tracer uptake is related to cell death. Further studies before and after therapy are needed to assess the potential of D-cis-[18F]FPro for treatment monitoring.
Collapse
|
50
|
Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, Bartenstein P, Schüller U, Tonn JC, Albert NL. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro Oncol 2019; 20:279-288. [PMID: 29016996 DOI: 10.1093/neuonc/nox153] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Stratification of glioma according to isocitrate dehydrogenase 1/2 (IDH1/2) mutation and 1p/19q codeletion status has gained major importance in the new World Health Organization (WHO) classification. Parameters derived from uptake dynamics of 18F-fluoro-ethyl-tyrosine PET (18F-FET-PET) such as minimal time-to-peak (TTPmin) allow discrimination between different prognostic glioma subgroups, too. The present study is aimed at exploring whether TTPmin analysis provides prognostic information beyond the WHO classification. Methods Three hundred patients with newly diagnosed WHO 2007 grades II-IV gliomas with 18F-FET-PET imaging at diagnosis were grouped into 4 subgroups (IDH1/2 mut-1p/19q codel; IDH1/2 mut-1p/19q non-codel; IDH1/2 wildtype WHO grade II and III tumors; and glioblastoma). Clinical and imaging factors such as age, Karnofsky performance score, treatment, TTPmin, and maximal tumor-to-brain ratio (TBRmax) were analyzed with regard to progression-free and overall survival (PFS and OS) via univariate and multivariate regression analysis. Results PFS and OS were longest in the IDH1/2 mut-1p/19q codel subgroup, followed by IDH1/2 mut-1p/19q non-codel, IDH1/2 wildtype, and GBM (P < 0.001). Further, outcome stratified by TTPmin with a cutoff of 17.5 minutes revealed significantly longer PFS and OS in patients with TTPmin >17.5 minutes (P < 0.001 for PFS and OS). Lower TBRmax values or the absence of 18F-FET uptake was also associated with favorable outcome in the entire group. In the subgroup analyses, longer median TTPmin was associated with improved outcome specifically in the IDH1/2 mut-1p/19q non-codel group. Conclusion 18F-FET-PET-derived dynamic analysis defines prognostically distinct subgroups of IDH1/2 mutant-1p/19q non-codel gliomas which cannot be distinguished as yet by molecular marker analysis.
Collapse
Affiliation(s)
- Bogdana Suchorska
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Armin Giese
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Annamaria Biczok
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Marcus Unterrainer
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Michael Weller
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Mark Drexler
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Peter Bartenstein
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Ulrich Schüller
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| | - Nathalie L Albert
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany (B.S., A.B., J.C.T.); German Cancer Consortium, partner site Munich, German Cancer Research Center, Heidelberg, Germany (B.S., A.G., A.B., M.U., M.D., P.B., U.S., J.C.T., N.L.A.); Department of Neuropathology (A.G., U.S.) and Department of Nuclear Medicine (M.U., M.D., P.B., N.L.A.), Ludwig-Maximilians-University, Munich, Germany; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland (M.W.)
| |
Collapse
|