1
|
Zhang Y, Liu F, Xiao H, Yao X, Li G, Choi SR, Ploessl K, Zha Z, Zhu L, Kung HF. Fluorine-18 labeled diphenyl sulfide derivatives for imaging serotonin transporter (SERT) in the brain. Nucl Med Biol 2018; 66:1-9. [PMID: 30096380 DOI: 10.1016/j.nucmedbio.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/15/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Serotonin transporters (SERT) play an important role in controlling serotonin concentration in the synaptic cleft and in managing postsynaptic signal transduction. Inhibitors of SERT binding are well known as selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine, sertraline, paroxetine, and escitalopram, that are commonly prescribed antidepressants. Positron emission tomography (PET) and single photon emission tomography (SPECT) imaging agents targeting SERT may be useful for studying its function and providing a tool for monitoring drug treatment. METHODS A series of novel 18F-labeled diphenyl sulfide derivatives were prepared and tested for their binding affinity. Among them, 2-((2-((dimethylamino)-methyl)-4-(2-(2-fluoroethoxy)ethoxy)phenyl)thio)aniline, 1, which showed excellent binding toward serotonin transporter (SERT) in the brain (Ki = 0.09 nM), was selected for further evaluation. An active OTs intermediate, 7, was treated with [18F]F-/K222 to provide [18F]1 in one step and in high radiochemical yields. This new SERT targeting agent was evaluated in rats by biodistribution studies and animal PET imaging studies. RESULTS The radiolabeling reaction led to the desired [18F]1. After HPLC purification no-carrier-added [18F]1 was obtained (radiochemical yield, 23-47% (n = 10,); radiochemical purity >99%; molar activity, 15-28 GBq/μmol). Biodistribution studies with [18F]1 showed good brain uptake (1.04% dose/g at 2 min post-injection), high uptake into the hypothalamus (1.55% dose/g at 30 min), and a high target-to-non-target (hypothalamus to cerebellum) ratio of 6.1 at 120 min post-injection. A PET imaging study in normal rats showed excellent uptake in the midbrain and thalamus regions known to be rich in SERT binding sites at 60 min after iv injection. Chasing experiment with escitalopram (iv, 2 mg/kg) in a rat at 60 min after iv injection caused a noticeable reduction in the regional radioactivity and the target-to-non-target ratio, suggesting binding by [18F]1 was highly specific and reversible for SERT binding sites in the brain. CONCLUSIONS A novel diphenyl sulfide derivative, [18F]1 for SERT imaging was successfully prepared and evaluated. Results suggest that this new chemical entity is targeting SERT binding sites in the brain, and it is a suitable candidate for future commercial development.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Futao Liu
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Xiao
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Xinyue Yao
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Genxun Li
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Seok Rye Choi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhihao Zha
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals (College of Chemistry), Beijing Normal University, Ministry of Education, Beijing, 100875, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Hank F Kung
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Liu F, Zhu L, Choi SR, Plössl K, Zha Z, Kung HF. Deuterium-substituted 2-(2′-((dimethylamino)methyl)-4′-[18
F](fluoropropoxy)phenylthio)benzenamine as a serotonin transporter imaging agent. J Labelled Comp Radiopharm 2018; 61:576-585. [DOI: 10.1002/jlcr.3626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Futao Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; Beijing Normal University; Beijing P. R. China
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; Beijing Normal University; Beijing P. R. China
| | - Seok Rye Choi
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Karl Plössl
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Zhihao Zha
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
| | - Hank F. Kung
- Department of Radiology; University of Pennsylvania; Philadelphia Pennsylvania USA
- Five Eleven Pharma Inc; Philadelphia Pennsylvania USA
| |
Collapse
|
3
|
Qiao H, Zhang Y, Wu Z, Zhu L, Choi SR, Ploessl K, Kung HF. One-step preparation of [(18)F]FPBM for PET imaging of serotonin transporter (SERT) in the brain. Nucl Med Biol 2016; 43:470-7. [PMID: 27236282 DOI: 10.1016/j.nucmedbio.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 01/27/2023]
Abstract
Serotonin transporters (SERT) in the brain play an important role in normal brain function. Selective serotonin reuptake inhibitors such as fluoxetine, sertraline, paroxetine, escitalopram, etc., specifically target SERT binding in the brain. Development of SERT imaging agents may be useful for studying the function of SERT by in vivo imaging. A one-step preparation of [(18)F]FPBM, 2-(2'-(dimethylamino)methyl)-4'-(3-([(18)F]fluoropropoxy)phenylthio)benzenamine, for positron emission tomography (PET) imaging of SERT binding in the brain was achieved. An active OTs intermediate, 9, was reacted with [(18)F]F(-)/K222 to produce [(18)F]FPBM in one step and in high radiochemical yield. This labeling reaction was evaluated and optimized under different temperatures, bases, solvents, and varying amounts of precursor 9. The radiolabeling reaction led to the desired [(18)F]FPBM in one step and the crude product was purified by HPLC purification to give no-carrier-added [(18)F]FPBM (radiochemical yield, 24-33%, decay corrected; radiochemical purity >99%). PET imaging studies in normal monkeys (n=4) showed fast, pronounced uptakes in the midbrain and thalamus, regions known to be rich in SERT binding sites. A displacement experiment with escitalopram (5mg/kg iv injection at 30min after [(18)F]FPBM injection) showed a rapid and complete reversal of SERT binding, suggesting that binding by [(18)F]FPBM was highly specific and reversible. A one-step radiolabeling method coupled with HPLC purification for preparation of [(18)F]FPBM was developed. Imaging studies suggest that it is feasible to use this method to prepare [(18)F]FPBM for in vivo PET imaging of SERT binding in the brain.
Collapse
Affiliation(s)
- Hongwen Qiao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Zehui Wu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Seok Rye Choi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hank F Kung
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Zhu L, Li G, Choi SR, Plössl K, Chan P, Qiao H, Zha Z, Kung HF. An improved preparation of [18F]FPBM: A potential serotonin transporter (SERT) imaging agent. Nucl Med Biol 2013; 40:974-9. [DOI: 10.1016/j.nucmedbio.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
|
5
|
Lemoine L, Lieberman BP, Ploessl K, Zheng P, Kung HF. Characterization of FlipIDAM as a SERT-selective SPECT imaging agent. Nucl Med Biol 2013; 40:879-86. [PMID: 23856117 DOI: 10.1016/j.nucmedbio.2013.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/23/2013] [Accepted: 06/04/2013] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Biological evaluation of ([(125)I]4), a new single-photon emission computed tomography (SPECT) radioligand for imaging the serotonin transporter (SERT) which displayed improved in vivo kinetics for mapping SERT binding sites in the brain. METHODS In vitro binding studies of [(125)I]4 were performed with membrane homogenates of LLC-PK1 cells stably transfected and overexpressing one of the monoamine transporter (SERT, DAT or NET) and rat cortical homogenates. Biodistribution and ex vivo autoradiography studies were carried out in rats. In vivo competition experiments were evaluated to determine the SERT selectivity of [(125)I]4 vs. ([(125)I]1). RESULTS In vitro binding studies of 4 showed excellent binding affinity (Ki,SERT=0.90 ± 0.05 nM) and excellent selectivity over the other monoamine transporters (100 fold and >4000 fold for NET and DAT respectively). Scatchard analysis of saturation binding of [(125)I]4 to rat cortical homogenates gave a Kd value of 0.5 ± 0.09 nM and a Bmax value of 801.4 ± 58.08 fmol/mg protein. The biodistribution study showed rapid high brain uptake (3.09 ± 0.11% dose/organ at 2 min) and a good target to non-target ratio (hypothalamus to cerebellum) at 30 min (2.62) compared to [(125)I]1 (2.19). Ex vivo autoradiography showed that FlipIDAM localizes in accordance with SERT distribution patterns in the brain. In vivo and ex vivo competition experiments with specific and non-specific SERT compounds also showed that [(125)I]4 binds specifically to SERT rich regions. CONCLUSIONS The biological evaluation of [(125)I]4 demonstrates that [(123)I]4 would be a good candidate for SPECT imaging of SERT.
Collapse
Affiliation(s)
- Laetitia Lemoine
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
6
|
Wang JL, Deutsch EC, Oya S, Kung HF. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter. Nucl Med Biol 2010; 37:577-86. [DOI: 10.1016/j.nucmedbio.2010.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 02/27/2010] [Indexed: 10/19/2022]
|
7
|
Middleton DS, Andrews M, Glossop P, Gymer G, Hepworth D, Jessiman A, Johnson PS, MacKenny M, Pitcher MJ, Rooker T, Stobie A, Tang K, Morgan P. Designing rapid onset selective serotonin re-uptake inhibitors. 2: Structure–activity relationships of substituted (aryl)benzylamines. Bioorg Med Chem Lett 2008; 18:4018-21. [DOI: 10.1016/j.bmcl.2008.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
|
8
|
Jarkas N, Voll RJ, Williams L, Votaw JR, Owens M, Goodman MM. Synthesis and in vivo evaluation of halogenated N,N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine derivatives as PET serotonin transporter ligands. J Med Chem 2007; 51:271-81. [PMID: 18085744 DOI: 10.1021/jm0707929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N, N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (38), substituted on ring A, was reported to display high binding affinity and selectivity to the human brain serotonin transporter (SERT). In an attempt to explore the potential of compounds substituted on ring B of the phenylthiophenyl core structure, three derivatives of 38 were synthesized: N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-fluorobenzylamine (35), N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-bromobenzylamine (36), and N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-iodobenzylamine (37). The in vitro binding studies in cells transfected with human SERT, norepinephrine transporter (NET), and dopamine transporter (DAT) showed that 35, 36, and 37 exhibited high SERT affinity with K is (SERT) = 1.26, 0.29, and 0.31 nM (vs [(3)H]citalopram), respectively. [(11)C]-(35), [(11)C]-(36), and [(11)C]-( 37) were prepared by methylation of their monomethyl precursors 16, 17, and 18, with [(11)C]iodomethane in 28, 11, and 14% radiochemical yields, respectively. The microPET images of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) showed high uptake in the monkey brain regions rich in SERT with peak midbrain to cerebellum ratios of 3.41, 3.24, and 3.00 at 85 min post-injection, respectively. In vivo bindings of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) were shown to be specific to the SERT as displacement with citalopram (a potent SERT ligand) reduced radioactivity in SERT-rich regions to the cerebellum level. These results suggest that [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) could be potential agents for mapping human SERT by PET and radiolabeling 37 with iodine-123, which could afford the first SPECT SERT imaging agent exhibiting fast kinetics.
Collapse
Affiliation(s)
- Nachwa Jarkas
- Department of Radiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
9
|
Parhi AK, Wang JL, Oya S, Choi SR, Kung MP, Kung HF. 2-(2'-((dimethylamino)methyl)-4'-(fluoroalkoxy)-phenylthio)benzenamine derivatives as serotonin transporter imaging agents. J Med Chem 2007; 50:6673-84. [PMID: 18052090 DOI: 10.1021/jm070685e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel series of ligands with substitutions at the 5-position on phenyl ring A and at the 4'-position on phenyl ring B of 2-(2'-((dimethylamino)methyl)-4'-(fluoroalkoxy)phenylthio)benzenamine (4'-2-fluoroethoxy derivatives 28-31 and 4'-3-fluoropropoxy derivatives 40-42) were prepared and tested as serotonin transporter (SERT) imaging agents. The new ligands displayed high binding affinities to SERT (Ki ranging from 0.03 to 1.4 nM). The corresponding 18F labeled compounds, which can be prepared readily, showed excellent brain uptake and retention after iv injection in rats. The hypothalamus region showed high uptake values between 0.74% and 2.2% dose/g at 120 min after iv injection. Significantly, the hypothalamus to cerebellum ratios (target to nontarget ratios) at 120 min were 7.8 and 7.7 for [18F]28 and [18F]40, respectively. The selective uptake and retention in the hypothalamus, which has a high concentration of SERT binding sites, demonstrated that [18F]28 and [18F]40 are promising positron emission computed tomography imaging agents for mapping SERT binding sites in the brain.
Collapse
Affiliation(s)
- Ajit K Parhi
- Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lakshmi B, Kung MP, Lieberman B, Zhao J, Waterhouse R, Kung HF. (R)-N-Methyl-3-(3-(125)I-pyridin-2-yloxy)-3-phenylpropan-1-amine: a novel probe for norepinephrine transporters. Nucl Med Biol 2007; 35:43-52. [PMID: 18158942 DOI: 10.1016/j.nucmedbio.2007.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 08/30/2007] [Indexed: 11/19/2022]
Abstract
Alterations in serotonin and norepinephrine neuronal functions have been observed in patients with major depression. Several antidepressants bind to both serotonin transporters and norepinephrine transporters (NET). The ability to image NET in the human brain would be a useful step toward understanding how alterations in NET relate to disease. In this study, we report the synthesis and characterization of a new series of derivatives of iodonisoxetine, a known radioiodinated probe. The most promising, (R)-N-methyl-3-(3-iodopyridin-2-yloxy)-3-phenylpropylamine (PYINXT), displayed a high and saturable binding to NET, with a K(d) value of 0.53+/-0.03 nM. Biodistribution studies of (R)-N-methyl-3-(3-(125)I-pyridin-2-yloxy)-3-phenylpropan-1-amine in rats showed moderate initial brain uptake (0.54% dose/organ at 2 min) with a relatively fast washout from the brain (0.16% dose/organ at 2 h) as compared to [(125)I]INXT. The hypothalamus (a NET-rich region)-to-striatum (a region devoid of NET) ratio was found to be 2.14 at 4 h after intravenous injection. Preliminary results suggest that this improved iodinated ligand, when labeled with (123)I, may be useful for mapping NET-binding sites with single photon emission computed tomography in the living human brain.
Collapse
Affiliation(s)
- Balagopal Lakshmi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|