1
|
Melis DR, Segers C, Wellens J, Van de Voorde M, Blacque O, Ooms M, Gasser G, Opsomer T. Cysteine-selective [ 188Re]Re(v) radiolabelling of a Nanobody® for targeted radionuclide therapy using a "chelate-then-click" approach. Chem Sci 2025; 16:6089-6098. [PMID: 40078611 PMCID: PMC11894466 DOI: 10.1039/d4sc07743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
In this study, we present the first reported use of bioorthogonal click chemistry with rhenium-188 for radiolabelling of an anti-c-Met VHH Nanobody®. We employed a "chelate-then-click" strategy, wherein a bifunctional chelator was designed in two parts, which were subsequently joined post-labelling and post-conjugation via the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. Cysteine-selective conjugation of the VHH was achieved through thiol-Michael addition, forming a VHH-DBCO construct. Radiolabelling of the azide-functionalised chelator with [188Re]Re(v) was optimised to achieve a radiochemical conversion of ∼70%, despite challenges associated with maintaining the azide functionality under reducing conditions. The final product, [188Re]Re-VHH, demonstrated high radiochemical purity and good in vitro stability over 48 h. In vitro cell-binding studies against U87MG and BxPC3 cell lines proved the retention of c-Met binding post-labelling. In vivo biodistribution studies on mice bearing BxPC3 tumour xenografts, however, exhibited suboptimal tumour uptake, likely a result of the low molar activity (1.4-3.3 MBq nmol-1) of the radioconjugate. This work illustrates the potential of bioorthogonal click chemistry for radiolabelling biomolecules with 188Re, although further optimisation or alternative radiolabelling strategies to enhance the molar activity are necessary to improve pharmacokinetics.
Collapse
Affiliation(s)
- Diana R Melis
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN) Mol 2400 Belgium
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences Paris 75005 France https://www.gassergroup.com
| | - Charlotte Segers
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN) Mol 2400 Belgium
| | - Jasmien Wellens
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN) Mol 2400 Belgium
| | - Michiel Van de Voorde
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN) Mol 2400 Belgium
| | - Olivier Blacque
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 Zurich 8057 Switzerland
| | - Maarten Ooms
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN) Mol 2400 Belgium
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences Paris 75005 France https://www.gassergroup.com
| | - Tomas Opsomer
- Nuclear Medical Applications (NMA), Belgian Nuclear Research Centre (SCK CEN) Mol 2400 Belgium
| |
Collapse
|
2
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
3
|
Melis DR, Burgoyne AR, Ooms M, Gasser G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med Chem 2022; 13:217-245. [PMID: 35434629 PMCID: PMC8942221 DOI: 10.1039/d1md00364j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/16/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of a biological targeting vector with an appropriate therapeutic radionuclide, often facilitated by the use of a bifunctional chelator (BFC) to stably link the two entities. The radioisotopes of rhenium, 186Re (t 1/2 = 90 h, 1.07 MeV β-, 137 keV γ (9%)) and 188Re (t 1/2 = 16.9 h, 2.12 MeV β-, 155 keV γ (15%)), are particularly attractive for radiotherapy because of their convenient and high-abundance β--particle emissions as well as their imageable γ-emissions and chemical similarity to technetium. As a transition metal element with multiple oxidation states and coordination numbers accessible for complexation, there is great opportunity available when it comes to developing novel BFCs for rhenium. The purpose of this review is to provide a recap on some of the past successes and failings, as well as show some more current efforts in the design of BFCs for 186/188Re. Future use of these radionuclides for radiotherapy depends on their cost-effective availability and this will also be discussed. Finally, bioconjugation strategies for radiolabelling biomolecules with 186/188Re will be touched upon.
Collapse
Affiliation(s)
- Diana R Melis
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| | - Andrew R Burgoyne
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Maarten Ooms
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| |
Collapse
|
4
|
Nautiyal A, Jha AK, Mithun S, Shetye B, Kameswaran M, Shah S, Rangarajan V, Gupta S. Analysis of absorbed dose in radioimmunotherapy with 177Lu-trastuzumab using two different imaging scenarios: a pilot study. Nucl Med Commun 2021; 42:1382-1395. [PMID: 34406146 DOI: 10.1097/mnm.0000000000001472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Internal organ dosimetry is an important procedure to demonstrate the reliable application of 177Lu-trastuzumab radioimmunotherapy for human epidermal growth factor receptor-positive metastatic breast cancers. We are reporting the first human dosimetry study for 177Lu-trastuzumab. Another objective of our study was to calculate and compare the absorbed doses for normal organs and tumor lesions in patients before radioimmunotherapy with 177Lu-trastuzumab using two different imaging scenarios. METHODS Eleven patients (48.27 ± 8.95 years) with a history of metastatic breast cancer were included in the study. Postadministration of 177Lu-trastuzumab (351.09 ± 23.89 MBq/2 mg), acquisition was performed using planar and hybrid imaging scenarios at 4, 24, 72 and 168 h. Single-photon emission computed tomography/computed tomography imaging was performed at 72 h postinjection. Acquired images were processed using Dosimetry Toolkit software for the estimation of normalized cumulated activity in organs and tumor lesions. OLINDA/EXM 2.0 software was used for absorbed dose calculation in both scenarios. RESULTS Significant difference in normalized cumulated activity and the absorbed dose is noted between two imaging scenarios for the organs and tumor lesions (P < 0.05). Mean absorbed dose (mGy/MBq) estimated from heart, lungs, liver, spleen, kidney, adrenal, pancreas and colon using planar and hybrid scenarios were 0.81 ± 0.19 and 0.63 ± 0.17; 0.75 ± 0.13 and 0.32 ± 0.06; 1.26 ± 0.25 and 1.01 ± 0.17; 0.68 ± 0.22 and 0.53 ± 0.16; 0.91 ± 0.3 and 0.69 ± 0.24; 0.18 ± 0.04 and 0.11 ± 0.02; 0.25 ± 0.22 and 0.09 ± 0.02 and 0.75 ± 0.61 and 0.44 ± 0.28, respectively. CONCLUSIONS On the basis of our dosimetric evaluation, we concluded that radioimmunotherapy with 177Lu-trastuzumab is well tolerated to be implemented in routine clinical practice against HER2 positive metastatic breast cancer. Liver is the main critical organ at risk. Hybrid scenario demonstrated significantly lower absorbed doses in organs and tumors compared to the multiplanar method.
Collapse
Affiliation(s)
- Amit Nautiyal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ashish K Jha
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sneha Mithun
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Bhakti Shetye
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mythili Kameswaran
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Altıparmak Güleç B, Yurt F. Treatment with Radiopharmaceuticals and Radionuclides in Breast Cancer: Current Options. Eur J Breast Health 2021; 17:214-219. [PMID: 34263148 DOI: 10.4274/ejbh.galenos.2021.2021-3-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Radiopharmaceutical therapy (RPT) is an effective and safe treatment for many types of cancer. RPT acts by binding radioactive atoms to tumor-associated antigens, monoclonal antibodies, nanoparticles, peptides, and small molecules. These treatments ensure that a concentrated dose is delivered to the targeted tumor tissue while preserving the normal tissues surrounding the tumor. Given these features, RPT is superior to traditional methods. This review article aimed to performa comprehensive review and evaluation of the potential of radionuclides and radiopharmaceuticals used in breast cancer treatment in preclinical studies conducted in the last five years.
Collapse
Affiliation(s)
- Burcu Altıparmak Güleç
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, İzmir, Turkey (Graduated)
| | - Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, İzmir, Turkey
| |
Collapse
|
6
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a "theranostic pair." Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University HospitalAngers, France
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
| | - François Hindré
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- ICO (Institut de Cancérologie de l'Ouest)Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
- ENSCR (Ecole Nationale Supérieure de Chimie de Rennes)Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - F. F. Russ Knapp
- EmeritusMedical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
8
|
Demoin DW, Dame AN, Minard WD, Gallazzi F, Seickman GL, Rold TL, Bernskoetter N, Fassbender ME, Hoffman TJ, Deakyne CA, Jurisson SS. Monooxorhenium(V) complexes with 222-N 2S 2 MAMA ligands for bifunctional chelator agents: Syntheses and preliminary in vivo evaluation. Nucl Med Biol 2016; 43:802-811. [PMID: 27694058 PMCID: PMC5118109 DOI: 10.1016/j.nucmedbio.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Targeted radiotherapy using the bifunctional chelate approach with 186/188Re(V) is challenging because of the susceptibility of monooxorhenium(V)-based complexes to oxidize in vivo at high dilution. A monoamine-monoamide dithiol (MAMA)-based bifunctional chelating agent was evaluated with both rhenium and technetium to determine its utility for in vivo applications. METHODS A 222-MAMA chelator, 222-MAMA(N-6-Ahx-OEt) bifunctional chelator, and 222-MAMA(N-6-Ahx-BBN(7-14)NH2) were synthesized, complexed with rhenium, radiolabeled with 99mTc and 186Re (carrier added and no carrier added), and evaluated in initial biological distribution studies. RESULTS An IC50 value of 2.0±0.7nM for natReO-222-MAMA(N-6-Ahx-BBN(7-14)NH2) compared to [125I]-Tyr4-BBN(NH2) was determined through competitive cell binding assays with PC-3 tumor cells. In vivo evaluation of the no-carrier added 99mTc-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed little gastric uptake and blockable pancreatic uptake in normal mice. CONCLUSIONS The 186ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed stability in biological media, which indicates that the 222-N2S2 chelator is appropriate for chelating 186/188Re in radiopharmaceuticals involving peptides. Additionally, the in vitro cell studies showed that the ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex (macroscopically) bound to PC3-tumor cell surface receptors with high affinity. The 99mTc analog was stable in vivo and exhibited pancreatic uptake in mice that was blockable, indicating BB2r targeting.
Collapse
Affiliation(s)
- Dustin Wayne Demoin
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Ashley N Dame
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - William D Minard
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Fabio Gallazzi
- Department of Structural Biology Core, University of Missouri, Columbia, MO 65211, USA
| | - Gary L Seickman
- Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Tammy L Rold
- Department of Medicine, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Nicole Bernskoetter
- Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Michael E Fassbender
- Chemistry Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Timothy J Hoffman
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, University of Missouri, Columbia, MO 65211, USA; Research Division, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO 65201, USA
| | - Carol A Deakyne
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
Bhusari P, Vatsa R, Singh G, Parmar M, Bal A, Dhawan DK, Mittal BR, Shukla J. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer 2016; 140:938-947. [PMID: 27813061 DOI: 10.1002/ijc.30500] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 11/08/2022]
Abstract
HER2/neu is over expressed in 20-25% of breast cancers. HER2 breast cancers are aggressive and are associated with poor prognosis. The aim of this study was to develop the clinical grade Lu-177-trastuzumab and its preliminary evaluation for specific tumor targeting in HER2 positive breast cancer patients. Trastuzumab was conjugated to bifunctional chelator, DOTA, and characterized for integrity and the number of molecules conjugated. Radiolabeling of DOTA-conjugated trastuzumab was optimized using Lu-177. Quality control parameters including radiochemical purity, stability, sterility, pyrogenicity and immunoreactivity were assessed. A preliminary pilot study was conducted on breast cancer patients (n = 6 HER2 positive and n = 4 HER2 negative) to evaluate the ability of Lu-177-trastuzumab for HER2 specific tumor targeting. The conjugates were efficiently labeled with Lu-177 with high radiochemical purity (up to 91%) and specific activity (6-13 µCi/µg). Lu-177-trastuzumab was stable up to 12 hr post labeling. The radioimmunoassay demonstrated good antigen binding ability and specificity for HER2 receptor protein. The patient studies showed the localization of Lu-177-trastuzumab at primary as well as metastatic sites (HER2 positive) in the planar and SPECT/CT images. No tracer uptake was observed in HER2 negative patients that indicated the specificity of Lu-177-trastuzumab. The study demonstrated that in-house developed Lu-177-trastuzumab has specific targeting ability for HER2 expressing lesions and may in future become a palliative treatment option in the form of targeted radionuclide therapy for disseminated HER2 positive breast cancer.
Collapse
Affiliation(s)
- Priya Bhusari
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India.,Centre for Nuclear Medicine, Punjab University, Chandigarh, India
| | - Rakhee Vatsa
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India.,Centre for Nuclear Medicine, Punjab University, Chandigarh, India
| | - Gurpreet Singh
- Department of General Surgery, PGIMER, Chandigarh, India
| | - Madan Parmar
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, India
| | | | | | - Jaya Shukla
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India
| |
Collapse
|
10
|
Investigation of SP94 Peptide as a Specific Probe for Hepatocellular Carcinoma Imaging and Therapy. Sci Rep 2016; 6:33511. [PMID: 27649935 PMCID: PMC5030711 DOI: 10.1038/srep33511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
SP94 (SFSIIHTPILPL), a novel peptide, has shown specific binding to hepatocellular carcinoma (HCC) cells. We aimed to investigate the capability of SP94 as a targeting probe for HCC imaging and therapy following labeling with technetium-99m ((99m)Tc) and rhenium-188 ((188)Re). HYNIC-SP94 was prepared by solid phase synthesis and then labeled with (99m)Tc. Cell competitive binding, internalization assay, in vitro and in vivo stability, biodistribution and micro-single photon emission computed tomography /computed tomography (SPECT/CT) imaging studies were performed to investigate the capability of (99m)Tc tricine-EDDA/HYNIC-SP94 as a specific HCC imaging probe. Initial promising targeting results inspired evaluation of its therapeutic effect when labeled by (188)Re. HYNIC-SP94 was then labeled again with (188)Re to perform cell apoptosis, microSPECT/CT imaging evaluation and immunohistochemistry. Huh-7 cells exhibited typical apoptotic changes after (188)Re irradiation. According to (99m)Tc tricine-EDDA/HYNIC-SP94 microSPECT/CT imaging, tumor uptake was significantly decreased compared with that of pre-treatment with (188)Re-HYNIC-SP94. The immunohistochemistry also displayed obvious necrosis and apoptosis as well as inhibition of proliferation in the (188)Re-HYNIC-SP94 treatment group. The results supported that (99m)Tc tricine-EDDA/HYNIC-SP94 is able to target HCC cells and (188)Re-HYNIC- SP94 holds potential as a therapeutic agent for HCC, making (99m)Tc/(188)Re-HYNIC-SP94 a promising targeting probe for HCC imaging and therapy.
Collapse
|
11
|
Hille C, Kühn FE. Cationic rhenium complexes ligated with N-heterocyclic carbenes – an overview. Dalton Trans 2016; 45:15-31. [DOI: 10.1039/c5dt03641k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the currently known cationic rhenium NHC complexes.
Collapse
Affiliation(s)
- Claudia Hille
- Chair of Inorganic Chemistry/Molecular Catalysis
- Department of Chemistry
- Catalysis Research Center
- Technische Universität München
- D-85747 Garching bei München
| | - Fritz E. Kühn
- Chair of Inorganic Chemistry/Molecular Catalysis
- Department of Chemistry
- Catalysis Research Center
- Technische Universität München
- D-85747 Garching bei München
| |
Collapse
|
12
|
Shih YH, Peng CL, Chiang PF, Lin WJ, Luo TY, Shieh MJ. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma. Int J Nanomedicine 2015; 10:7443-54. [PMID: 26719687 PMCID: PMC4687727 DOI: 10.2147/ijn.s91008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 ((188)Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of (188)Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined (188)Re-Dox micelles group had significantly longer survival compared with the control, (188)ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with (188)Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, (188)Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ying-Hsia Shih
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ping-Fang Chiang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Wuu-Jyh Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan ; Institute of Radiological Science, Central University, Taichung, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan ; Department of Oncology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Bhusari P, Vatsa R, Singh G, Dhawan DK, Shukla J, Mittal BR. Development and characterization of DTPA-trastuzumab conjugates for radiolabeling with Tc-99m: A radiopharmaceutical for HER2/neu breast cancer. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
|
15
|
Pruszynski M, Koumarianou E, Vaidyanathan G, Chitneni S, Zalutsky MR. D-Amino acid peptide residualizing agents bearing N-hydroxysuccinimido- and maleimido-functional groups and their application for trastuzumab radioiodination. Nucl Med Biol 2015; 42:19-27. [PMID: 25240914 PMCID: PMC4268387 DOI: 10.1016/j.nucmedbio.2014.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent N(ϵ)-(3-[(*)I]iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-D-GEEEK (Mal-D-GEEEK-[(*)I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. METHODS N(α)-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. RESULTS NHS-[(131)I]IB-D-EEEG was produced in 53.8%±13.4% and conjugated to trastuzumab in 39.5%±7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[(131)I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[(125)I]IB demonstrated similar intracellular trapping for both conjugates at 1h ((131)I, 84.4%±6.1%; (125)I, 88.6%±5.2%) through 24h ((131)I, 60.7%±6.8%; (125)I, 64.9%±6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[(131)I]IB-D-EEEG, 29.8%±3.6%ID/g; trastuzumab-Mal-D-GEEEK-[(125)I]IB, 45.3%±5.3%ID/g) and was significantly higher for (125)I at all time points. In general, normal tissue levels were lower for trastuzumab-NHS-[(131)I]IB-D-EEEG, with the differences being greatest in kidneys ((131)I, 2.2%±0.4%ID/g; (125)I, 16.9%±2.8%ID/g at 144 h). CONCLUSION NHS-[(131)I]IB-D-EEEG warrants further evaluation as a residualizing radioiodination agent for labeling internalizing antibodies/fragments, particularly for applications where excessive renal accumulation could be problematic.
Collapse
Affiliation(s)
- Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Satish Chitneni
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA; Departments of Biomedical Engineering and Radiation Oncology, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Luo TY, Cheng PC, Chiang PF, Chuang TW, Yeh CH, Lin WJ. 188Re-HYNIC-trastuzumab enhances the effect of apoptosis induced by trastuzumab in HER2-overexpressing breast cancer cells. Ann Nucl Med 2014; 29:52-62. [PMID: 25238789 DOI: 10.1007/s12149-014-0908-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The development of radioimmunotherapy has provided an impressive alternative approach in improving trastuzumab therapy. However, the mechanisms of trastuzumab and radiation treatment combined to increase therapeutic efficacy are poorly understood. Here, we try to examine the efficacy of cytotoxicity and apoptosis induction for (188)Re-HYNIC-trastuzumab in cancer cell lines with various levels of Her2. MATERIALS AND METHODS Fluorescence flow cytometry was used to detect the alterations of apoptosis induction after (188)Re-HYNIC-trastuzumab treatment in two breast cancer cell lines with different levels of HER2 (BT-474 and MCF-7) and a colorectal carcinoma cell line (HT-29) for control. RESULTS Our results indicated that (188)Re-HYNIC-trastuzumab led to cell death of breast cancer cells specifically in HER2 level-dependent and radioactivity dose-dependent fashions. In BT-474 cells, 370 kBq/ml of (188)Re-HYNIC-trastuzumab enhanced the cytotoxicity to a level nearly 100-fold that of trastuzumab-alone treatment. The results also revealed that the mitochondria-dependent pathway attenuated irradiation-induced apoptosis in HER2-expressing breast cancer cells after (188)Re-HYNIC-trastuzumab treatment. In contrast, only after 48 h of (188)Re-HYNIC-trastuzumab treatment, BT-474 cells exhibited typical apoptotic changes, including exposure of phospholipid phosphatidylserine on the cell surface, or fragmented DNA formation, in a radioactivity dose-dependent manner. CONCLUSION Briefly, our study demonstrates that (188)Re-labeled HYNIC-trastuzumab not only enhances cell death in a radioactivity dose-dependent fashion, but may also prolong the effects of apoptosis involved with the mitochondria-dependent pathway in HER2-overexpressing breast cancer cells. It is possible that the (188)Re-HYNIC-trastuzumab treatment induced a second round of apoptosis to prolong the effects of cell kill in these cancer cells. These data revealed that (188)Re-HYNIC-trastuzumab has the potential for use as a therapeutic radiopharmaceutical agent in HER2-overexpressing breast cancer cell treatment.
Collapse
Affiliation(s)
- Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. BOX 3-27, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan, 32546, Taiwan,
| | | | | | | | | | | |
Collapse
|
17
|
Cheng PC, Chiang PF, Lee KM, Yeh CH, Hsu KL, Liu SW, Shen LH, Peng CL, Fan CK, Luo TY. Evaluating the potential of a new isotope-labelled glyco-ligand for estimating the remnant liver function of schistosoma-infected mice. Parasite Immunol 2013; 35:129-139. [PMID: 23216139 DOI: 10.1111/pim.12022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 11/30/2012] [Indexed: 12/15/2022]
Abstract
A new glyco-derivative compound (OCTAM) was developed and labelled with isotope to form (188) Re-OCTAM as a candidate nuclear medicine imaging agent for testing the liver function. We evaluated the potential of isotope-labelled OCTAM for estimating the remnant liver function in vitro and in vivo schistosoma-infected mice. The affinity of OCTAM to liver asialoglycoprotein receptors (ASGPR) was assessed by competitive inhibition assay in vitro. In vivo assessments were performed to score the remnant liver function in mice at different schistosomal infection stages. OCTAM binds specifically to ASGPR and showed competitive inhibition of anti-ASGPR antibody binding to hepatocytes, and was higher than that of other galactosyl ligands. Micro-SPECT/CT images of uninfected mice revealed strong liver uptake. Quantified serial images of mice infected for 9, 12 and 18 weeks showed delayed liver uptake, and the retention of uptake was inversely correlated with stage and grade of schistosoma infection. Pathological and biochemical analysis demonstrated that gradually accumulating liver injury caused by infection significantly influenced uptake of (188) Re-OCTAM. Hepatic ASGPR expression diminished only in the chronic infection stage. This study demonstrated that the isotope-labelled OCTAM could accumulate in the liver, might have potential as an imaging agent for in vivo hepatic function evaluation of schistosomiasis.
Collapse
Affiliation(s)
- P-C Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - P-F Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - K-M Lee
- Institute of Medical Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - C-H Yeh
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - K-L Hsu
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - S-W Liu
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - L-H Shen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - C-L Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - C-K Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - T-Y Luo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| |
Collapse
|
18
|
Wang HY, Lin WY, Chen MC, Lin T, Chao CH, Hsu FN, Lin E, Huang CY, Luo TY, Lin H. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: A possible radioimmunotherapy to prostate carcinoma. Int J Radiat Biol 2013; 89:346-55. [DOI: 10.3109/09553002.2013.762136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Moreau M, Raguin O, Vrigneaud JM, Collin B, Bernhard C, Tizon X, Boschetti F, Duchamp O, Brunotte F, Denat F. DOTAGA-trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug Chem 2012; 23:1181-8. [PMID: 22519915 DOI: 10.1021/bc200680x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improved bifunctional chelating agents (BFC) are required for indium-111 radiolabeling of monoclonal antibodies (mAbs) under mild conditions to yield stable, target-specific agents. 2,2',2"-(10-(2,6-Dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (DOTAGA-anhydride) was evaluated for mAb conjugation and labeling with indium-111. The DOTA analogue was synthesized and conjugated to trastuzumab-which targets the HER2/neu receptor-in mild conditions (PBS pH 7.4, 25 °C, 30 min) and gave a mean degree of conjugation of 2.6 macrocycle per antibody. Labeling of this immunoconjugate with indium-111 was performed in 75% yield after 1 h at 37 °C, and the proportion of (111)In-DOTAGA-trastuzumab reached 97% after purification. The affinity of DOTAGA-trastuzumab was 5.5 ± 0.6 nM as evaluated by in vitro saturation assays using HCC1954 breast cancer cell line. SPECT/CT imaging and biodistribution studies were performed in mice bearing breast cancer BT-474 xenografts. BT-474 tumors were clearly visualized on SPECT images at 24, 48, and 72 h postinjection. The tumor uptake of [(111)In-DOTAGA]-trastuzumab reached 65%ID/g 72 h postinjection. These results show that the DOTAGA BFC appears to be a valuable tool for biologics conjugation.
Collapse
Affiliation(s)
- Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne , UMR CNRS 6302, 21078 Dijon Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Radiopharmaceuticals: When and How to Use Them to Treat Metastatic Bone Pain. ACTA ACUST UNITED AC 2011; 9:197-205. [DOI: 10.1016/j.suponc.2011.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/23/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022]
|
21
|
Brügmann A, Sorensen BS. Identifying responders to trastuzumab therapy in breast cancer. Future Oncol 2011; 7:767-73. [DOI: 10.2217/fon.11.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In breast cancer, HER2-targeted therapy with trastuzumab has gained significant attention, owing to the dramatic response observed in a subset of HER2-positive patients. The mechanisms of action are complex and not fully understood, and much effort has been spent in order to identify responders. Good patient management, side effects of the humanized monoclonal antibody and socioeconomics all demand that the drug should be administered only to the patients who will benefit from it. This has been a difficult task and contributions to solve it have been proposed from a variety of research. In this article we describe some of these contributions based on the literature and provide our viewpoint as to which identifiers will emerge in the following decade.
Collapse
Affiliation(s)
- Anja Brügmann
- Institute of Pathology, Aalborg Hospital, Ladegaardsgade 3, 9000 Aalborg, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Norrebrogade 44, DK 8000 Aarhus C, Denmark
| |
Collapse
|
22
|
Wong JYC, Raubitschek A, Yamauchi D, Williams LE, Wu AM, Yazaki P, Shively JE, Colcher D, Somlo G. A pretherapy biodistribution and dosimetry study of indium-111-radiolabeled trastuzumab in patients with human epidermal growth factor receptor 2-overexpressing breast cancer. Cancer Biother Radiopharm 2011; 25:387-94. [PMID: 20707718 DOI: 10.1089/cbr.2010.0783] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The purposes of this study were to evaluate the organ biodistribution, pharmacokinetics, immunogenicity, and tumor uptake of (111)Indium ((111)In)-MxDTPA-trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancers and to determine whether (90)Y-MxDTPA-trastuzumab should be evaluated in subsequent clinical therapy trials. EXPERIMENTAL DESIGN Patients with HER2-overexpressing breast cancers who were to undergo planned trastuzumab therapy first received unlabeled trastuzumab (4-8 mg/kg IV), followed 4 hours later by 5 mCi (111)In-MxDTPA-trastuzumab (10 mg antibody). Serial blood samples, 24-hour urine collections, and nuclear scans were performed at defined time points for 7 days. RESULTS Eight (8) patients received (111)In-MxDTPA-trastuzumab, which was well tolerated with no adverse side-effects. Three (3) of 7 patients with known lesions demonstrated positive imaging on nuclear scans. No antiantibody responses were observed for 2 months postinfusion. Organ doses (cGy/mCi) assuming radiolabeling with (90)Y were 19.9 for heart wall, 17.6 for liver, 4.6 for red marrow, and 2.8 for the whole body. Tumor doses ranged from 24 to 172 cGy/mCi. CONCLUSIONS In summary, results from this study indicate that (90)Y-MxDTPA-trastuzumab is an appropriate agent to evaluate in therapy trials. No evidence of an immune response to (111)In-MxDTPA-trastuzumab was detected, predicting for the ability to administer multiple cycles. With the exception of cardiac uptake, pharmacokinetics and organ biodistribution were comparable to other (90)Y-labeled monoclonal antibodies previously evaluated in the clinic. Cardiac uptake was comparable to hepatic uptake and therefore predicted to not be prohibitively high as to result in dose-limiting cardiotoxicity.
Collapse
Affiliation(s)
- Jeffrey Y C Wong
- Department of Radiation Oncology and Radiation Research, Beckman Research Institute, Duarte, California 91010, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Song H, Sgouros G. Radioimmunotherapy of solid tumors: searching for the right target. Curr Drug Deliv 2011; 8:26-44. [PMID: 21034423 PMCID: PMC4337879 DOI: 10.2174/156720111793663651] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022]
Abstract
Radioimmunotherapy of solid tumors remains a challenge despite the tremendous success of ⁹⁰Y ibritumomab tiuxetan (Zevalin) and ¹³¹I Tositumomab (Bexxar) in treating non-Hodgkin's lymphoma. For a variety of reasons, clinical trials of radiolabeled antibodies against solid tumors have not led to responses equivalent to those seen against lymphoma. In contrast, promising responses have been observed with unlabeled antibodies that target solid tumor receptors associated with cellular signaling pathways. These observations suggest that anti-tumor efficacy of the carrier antibody might be critical to achieving clinical responses. Here, we review and compare tumor antigens targeted by radiolabeled antibodies and unlabeled antibodies used in immunotherapy. The review shows that the trend for radiolabeled antibodies under pre-clinical development is to also target antigens associated with signaling pathways that are essential for the growth and survival of the tumor.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine, Russell H. Morgan, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. hsong6jhmi.edu
| | | |
Collapse
|
24
|
Rasaneh S, Rajabi H, Babaei MH, Daha FJ. 177Lu labeling of Herceptin and preclinical validation as a new radiopharmaceutical for radioimmunotherapy of breast cancer. Nucl Med Biol 2010; 37:949-55. [PMID: 21055626 DOI: 10.1016/j.nucmedbio.2010.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/30/2010] [Accepted: 07/01/2010] [Indexed: 11/27/2022]
Abstract
INTRODUCTION In the present study, Herceptin was labeled with lutetium-177 via DOTA, and the necessary preclinical quality control tests (in vitro and in vivo) were performed to evaluate its use as a radioimmunotherapy agent. MATERIAL AND METHODS Herceptin was conjugated to DOTA as a chelator in three different conjugation buffers (ammonium acetate, carbonate and HEPES buffer); each of the resulting conjugates was compared with respect to in vitro characteristics such as number of chelates per antibody, incorporated activity, immunoreactivity and in vitro stability in PBS buffer and blood serum. The biodistribution study and gamma camera imaging were performed in mice bearing breast tumors. To assess the therapeutic effects of (177)Lu-Herceptin, cytotoxicity was investigated for 7 days in a SKBr3 breast cancer cell line. RESULTS Carbonate buffer was the best conjugation buffer (number of chelates per antibody: 6; incorporated activity: 81%; immunoreactivity: 87%; buffer stability: 86%; serum stability: 81%, after 4 days). The efficient tumor uptake observed in the biodistribution studies was consistent with the gamma camera image results. At a concentration of 4 μg ml(-1), (177)Lu-Herceptin (surviving cells: 5 ± 0.6% of the total cells) of the total cells corresponded to an approximately eightfold increase in cytotoxicity in comparison to unmodified Herceptin (surviving cells: 43 ± 3.9%). CONCLUSION The new complex described herein could be considered for further evaluation in animals and potentially in humans as a radiopharmaceutical for use in the radioimmunotherapy of breast cancer. These results may be important for patients who cannot tolerate the therapeutic dosage of Herceptin currently used because of heart problems.
Collapse
Affiliation(s)
- Samira Rasaneh
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | | | | | | |
Collapse
|
25
|
Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med 2010; 40:89-104. [PMID: 20113678 DOI: 10.1053/j.semnuclmed.2009.10.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone pain due to skeletal metastases constitutes the most common type of chronic pain among patients with cancer. It significantly decreases the patient's quality of life and is associated with comorbidities, such as hypercalcemia, pathologic fractures and spinal cord compression. Approximately 65% of patients with prostate or breast cancer and 35% of those with advanced lung, thyroid, and kidney cancers will have symptomatic skeletal metastases. The management of bone pain is extremely difficult and involves a multidisciplinary approach, which usually includes analgesics, hormone therapies, bisphosphonates, external beam radiation, and systemic radiopharmaceuticals. In patients with extensive osseous metastases, systemic radiopharmaceuticals should be the preferred adjunctive therapy for pain palliation. In this article, we review the current approved radiopharmaceutical armamentarium for bone pain palliation, focusing on indications, patient selection, efficacy, and different biochemical characteristics and toxicity of strontium-89 chloride, samarium-153 lexidronam, and rhenium-186 etidronate. A brief discussion on the available data on rhenium-188 is presented focusing on its major advantages and disadvantages. We also perform a concise appraisal of the other available treatment options, including pharmacologic and hormonal treatment modalities, external beam radiation, and bisphosphonates. Finally, the available data on combination therapy of radiopharmaceuticals with bisphosphonates or chemotherapy are discussed.
Collapse
Affiliation(s)
- Fabio M Paes
- Division of Nuclear Medicine, Department of Radiology, University of Miami/Jackson Memorial Medical Center/Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | | |
Collapse
|