1
|
Mujahid A, Alotaibi B, DeMellier C, Gallegos C, Sherwani M, Alexandrian A, Sorace A, Brady A, George R. Characterization of Cutaneous Radiation Syndrome in a Mouse Model Using [18F]F- Fluorodeoxyglucose Positron Emission Tomography. HEALTH PHYSICS 2025:00004032-990000000-00222. [PMID: 39817868 DOI: 10.1097/hp.0000000000001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ABSTRACT Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis. Since currently there are no specific tests for radiation dermatitis, our study aimed to validate whether radiation dermatitis induced in mice can be accurately visualized and measured using [18F]F-FDG PET/CT. We induced cutaneous radiation syndrome in BALB/c mice with different radiation absorbed doses and monitored symptom development through photography, PET imaging, and histopathology, marking the first attempt at non-invasively quantifying radiation dermatitis effects at the molecular level using PET imaging. Our results showed that there were progressive changes in the dorsal skin of irradiated mice, with notable differences between those exposed to varying doses of radiation. Erythema, epilation, and desquamation were more pronounced in mice exposed to lower doses (25 Gy and 35 Gy) than at 45 Gy; however, by the third week, severe skin deterioration, including ulceration and dermal atrophy, was evident in mice irradiated with 35 Gy and 45 Gy. PET/CT imaging revealed increased [18F]F-FDG uptake in the irradiated dorsal skin area of all mice compared to controls, with more pronounced avidity for the lesion in the 25 Gy and 35 Gy than the 45 Gy. Comparison of tissue-normalized SUVMax values showed that both the 25 Gy and 35 Gy mice exhibited fourfold [18F]F-FDG uptake in the dorsal skin compared to controls, while a twofold uptake was seen at 45 Gy, thus indicating substantial metabolic changes in the dorsal skin induced by radiation exposure. Histopathological analyses correlated with the above findings, demonstrating generalized hypertrophy and epidermal thickening in all irradiated mice compared to controls, with thicker epidermis observed with higher radiation doses and increased destruction of microvasculature. In conclusion, PET/CT emerges as a successful tool for imaging cutaneous radiation syndrome, with the observed dermal changes in irradiated mice closely aligning with metabolic alterations of the affected area.
Collapse
Affiliation(s)
- Alaa Mujahid
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL
| | - Bashayr Alotaibi
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL
| | - Chloe DeMellier
- Department of Radiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Carlos Gallegos
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Sherwani
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ara Alexandrian
- Medical Physics, Mary Bird Perkins Cancer Center, Baton Rouge, LA
- Health Physics Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL
| | - Anna Sorace
- Department of Radiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Center of Clinical and Translational Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- O’Neal Comprehensive Cancer center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Amy Brady
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL
| | - Remo George
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL
- Graduate Biomedical Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Center of Clinical and Translational Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- O’Neal Comprehensive Cancer center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
2
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
3
|
Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600:120485. [PMID: 33744447 DOI: 10.1016/j.ijpharm.2021.120485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is a known deadliest disease that requires a judicious diagnostic, targeting, and treatment strategy for an early prognosis and selective therapy. The major pitfalls of the conventional approach are non-specificity in targeting, failure to precisely monitor therapy outcome, and cancer progression leading to malignancies. The unique physicochemical properties offered by nanotechnology derived nanocarriers have the potential to radically change the landscape of cancer diagnosis and therapeutic management. An integrative approach of utilizing both diagnostic and therapeutic functionality using a nanocarrier is termed as nanotheranostic. The nanotheranostics platform is designed in such a way that overcomes various biological barriers, efficiently targets the payload to the desired locus, and simultaneously supports planning, monitoring, and verification of treatment delivery to demonstrate an enhanced therapeutic efficacy. Thus, a nanotheranostic platform could potentially assist in drug targeting, image-guided focal therapy, drug release and distribution monitoring, predictionof treatment response, and patient stratification. A class of highly branched nanocarriers known as dendrimers is recognized as an advanced nanotheranostic platform that has the potential to revolutionize the oncology arena by its unique and exciting features. A dendrimer is a well-defined three-dimensional globular chemical architecture with a high level of monodispersity, amenability of precise size control, and surface functionalization. All the dendrimer properties exhibit a reproducible pharmacokinetic behavior that could ensure the desired biodistribution and efficacy. Dendrimers are thus being exploited as a nanotheranostic platform embodying a diverse class of therapeutic, imaging, and targeting moieties for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Vikrant Saluja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yachana Mishra
- Department of Zoology, Shri Shakti Degree College, Sankhahari, Ghatampur, Kanpur Nagar, Uttar Pradesh, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Namita Giri
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Pallavi Nayak
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Synthesis and preliminary in vivo evaluation of new [ 18F]fluoro-inositols as Positron Emission Tomography radiotracers. Bioorg Med Chem 2017; 25:5603-5612. [PMID: 28893600 DOI: 10.1016/j.bmc.2017.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/25/2017] [Accepted: 08/20/2017] [Indexed: 11/24/2022]
Abstract
This study describes the synthesis and radiosynthesis of eight new [18F]fluoro-inositol-based radiotracers in myo- and scyllo-inositol configuration. These radiotracers are equipped with a propyl linker bearing fluorine-18. This fluorinated arm is either on a hydroxyl group, i.e. O-alkylated inositols, or on the cyclohexyl backbone, i.e. C-branched derivatives. To modulate lipophilicity, inositols were synthesized in acetylated or hydroxylated form. Automated radiosynthesis was performed on the AllInOne module and the radiotracers were produced in good radiochemical yields (15-31.5% dc). Preliminary in vivo preclinical evaluation of these eight [18F]fluoro-inositols as Positron Emission Tomography (PET) imaging agents in a breast tumour-bearing mouse model was performed and compared with [18F]-2-fluoro-2-deoxy-d-glucose ([18F]FDG). Amongst the different inositols, [18F]myo-2 showed the highest tumour uptake 2.34±0.39%ID/g, revealing the potential of this tracer for monitoring breast cancer.
Collapse
|
5
|
Hovhannisyan N, Dhilly M, Guillouet S, Leporrier M, Barré L. Comparative Analysis between [(18)F]Fludarabine-PET and [(18)F]FDG-PET in a Murine Model of Inflammation. Mol Pharm 2016; 13:2136-9. [PMID: 27080099 DOI: 10.1021/acs.molpharmaceut.6b00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lymphoma research has advanced thanks to introduction of [(18)F]fludarabine, a positron-emitting tool. This novel radiotracer has been shown to display a great specificity for lymphoid tissues. However, in a benign process such as inflammation, the uptake of this tracer has not been questioned. Indeed, in inflammatory zones, elevated glucose metabolism rate may result in false-positives with [(18)F]FDG-PET Imaging. In the present investigation, it has been argued that cells, involved in inflammation, might be less avid of [(18)F]fludarabine. To generate inflammation, Swiss mice were intramuscularly injected with 0.1 mL of turpentine oil into the right front paw. Imaging sessions with (18)F-labeled tracers named above were conducted on days 5 and 25 after inoculation. For each animal, volumes of interest (VOI), delineating the muscle of the inflamed (IP) and normal paws (NP), were determined on PET scans. For characterization of inflammation, muscle samples from IP and NP were stained with hematoxylin and eosin (H&E). In early (day 5) inflammation, [(18)F]FDG accumulation was 4.00 ± 1.65 times greater in the IP than in the contralateral NP; for [(18)F]fludarabine, this IP/NP ratio was 1.31 ± 0.28, resulting in a significant difference between radiotracer groups (p < 0.01). In late (day 25) inflammation, the IP/NP ratios were 2.07 ± 0.49 and 1.03 ± 0.07, for [(18)F]FDG and [(18)F]fludarabine, respectively (p < 0.001). [(18)F]Fludarabine showed significantly weaker uptake in inflammation when compared with [(18)F]FDG. This encouraging finding suggests that [(18)F]fludarabine-PET might well be a robust approach for distinguishing tumor from inflammatory tissue, avoiding false-positive PET results and thus enabling an accurate imaging of lymphoma.
Collapse
Affiliation(s)
- Narinée Hovhannisyan
- CEA, DSV/I2BM, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France.,UNICAEN, UMR6301-ISTCT , F-14032 Caen, France.,UMR ISTCT 6301, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France
| | - Martine Dhilly
- CEA, DSV/I2BM, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France.,UNICAEN, UMR6301-ISTCT , F-14032 Caen, France.,UMR ISTCT 6301, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France
| | - Stéphane Guillouet
- CEA, DSV/I2BM, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France.,UNICAEN, UMR6301-ISTCT , F-14032 Caen, France.,UMR ISTCT 6301, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France
| | - Michel Leporrier
- CEA, DSV/I2BM, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France.,UNICAEN, UMR6301-ISTCT , F-14032 Caen, France.,UMR ISTCT 6301, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France
| | - Louisa Barré
- CEA, DSV/I2BM, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France.,UNICAEN, UMR6301-ISTCT , F-14032 Caen, France.,UMR ISTCT 6301, LDM-TEP group, GIP Cyceron , Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex, France
| |
Collapse
|
6
|
Motiei M, Dreifuss T, Betzer O, Panet H, Popovtzer A, Santana J, Abourbeh G, Mishani E, Popovtzer R. Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging. ACS NANO 2016; 10:3469-77. [PMID: 26886076 DOI: 10.1021/acsnano.5b07576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
One of the main limitations of the highly used cancer imaging technique, PET-CT, is its inability to distinguish between cancerous lesions and post treatment inflammatory conditions. The reason for this lack of specificity is that [(18)F]FDG-PET is based on increased glucose metabolic activity, which characterizes both cancerous tissues and inflammatory cells. To overcome this limitation, we developed a nanoparticle-based approach, utilizing glucose-functionalized gold nanoparticles (GF-GNPs) as a metabolically targeted CT contrast agent. Our approach demonstrates specific tumor targeting and has successfully distinguished between cancer and inflammatory processes in a combined tumor-inflammation mouse model, due to dissimilarities in angiogenesis occurring under different pathologic conditions. This study provides a set of capabilities in cancer detection, staging and follow-up, and can be applicable to a wide range of cancers that exhibit high metabolic activity.
Collapse
Affiliation(s)
- Menachem Motiei
- Faculty of Engineering and the Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Tamar Dreifuss
- Faculty of Engineering and the Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Oshra Betzer
- Faculty of Engineering and the Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Hana Panet
- Faculty of Engineering and the Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Aron Popovtzer
- Davidoff Cancer Center, Rabin Medical Center , Beilinson Campus, Petah Tiqwa 4941492, Israel
| | - Jordan Santana
- Faculty of Engineering and the Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Galith Abourbeh
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah-Hebrew University Hospital , Jerusalem 91120, Israel
| | - Eyal Mishani
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah-Hebrew University Hospital , Jerusalem 91120, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
7
|
Collet C, Chrétien F, Chapleur Y, Lamandé-Langle S. Diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues. Beilstein J Org Chem 2016; 12:353-61. [PMID: 26977196 PMCID: PMC4778503 DOI: 10.3762/bjoc.12.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023] Open
Abstract
Efficient routes were developed for the diastereoselective synthesis of new O-alkylated and C-branched inositols and their corresponding fluoro analogues. The key steps of the synthesis were the easy accessibility of different types of arms in term of configuration (myo and scyllo), the linking method and length, which could modulate the biological properties. These inositol derivatives, bearing an arm terminated either with a hydroxy group or a fluorine atom, could be interesting candidates for diastereoisomeric intermediates and biological evaluations, especially for PET imaging experiments.
Collapse
Affiliation(s)
- Charlotte Collet
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Françoise Chrétien
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Yves Chapleur
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| | - Sandrine Lamandé-Langle
- Université de Lorraine, Vandoeuvre-les-Nancy F-54500, France; CNRS, UMR 7565, Vandoeuvre-les-Nancy F-54506, France
| |
Collapse
|
8
|
The Synthesis and Evaluations of the (6 8) Ga-Lissamine Rhodamine B (LRB) as a New Radiotracer for Imaging Tumors by Positron Emission Tomography. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8549635. [PMID: 26949707 PMCID: PMC4754471 DOI: 10.1155/2016/8549635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 01/26/2023]
Abstract
PURPOSE The aim of this study is to synthesize and evaluate (68)Ga-labeled Lissamine Rhodamine B (LRB) as a new radiotracer for imaging MDA-MB-231 and MCF-7 cells induced tumor mice by positron emission tomography (PET). METHODS Firstly, we performed the radio synthesis and microPET imaging of (68)Ga(DOTA-LRB) in athymic nude mice bearing MDA-MB-231 and MCF-7 human breast cancer xenografts. Additionally, the evaluations of (18)F-fluorodeoxyglucose (FDG), as a glucose metabolism radiotracer for imaging tumors in the same xenografts, have been conducted as a comparison. RESULTS The radiochemical purity of (68)Ga(DOTA-LRB) was >95%. MicroPET dynamic imaging revealed that the uptake of (68)Ga(DOTA-LRB) was mainly in normal organs, such as kidney, heart, liver, and brain and mainly excreted from kidney. The MDA-MB-231 and MCF-7 tumors were not clearly visible in PET images at 5, 15, 30, 40, 50, and 60 min after injection of (68)Ga(DOTA-LRB). The tumor uptake values of (18)F-FDG were 3.79 ± 0.57 and 1.93 ± 0.48%ID/g in MDA-MB-231 and MCF-7 tumor xenografts, respectively. CONCLUSIONS (68)Ga(DOTA-LRB) can be easily synthesized with high radiochemical purity and stability; however, it may be not an ideal PET radiotracer for imaging of MDR-positive tumors.
Collapse
|
9
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
10
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
11
|
Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N. Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque. J Labelled Comp Radiopharm 2013; 57:323-31. [PMID: 24327420 DOI: 10.1002/jlcr.3158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 55 Fruit St., White 427, Boston, Massachusetts, 02114, USA; Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, 2232, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics 2013; 3:448-66. [PMID: 23843893 PMCID: PMC3706689 DOI: 10.7150/thno.6592] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using (18)F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed.
Collapse
|
13
|
Chan KWY, McMahon MT, Kato Y, Liu G, Bulte JWM, Bhujwalla ZM, Artemov D, van Zijl PCM. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 2012; 68:1764-73. [PMID: 23074027 DOI: 10.1002/mrm.24520] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Modern imaging technologies such as CT, PET, SPECT, and MRI employ contrast agents to visualize the tumor microenvironment, providing information on malignancy and response to treatment. Currently, all clinical imaging agents require chemical labeling, i.e. with iodine (CT), radioisotopes (PET/SPECT), or paramagnetic metals (MRI). The goal was to explore the possibility of using simple D-glucose as an infusable biodegradable MRI agent for cancer detection. METHODS D-glucose signals were detected using chemical exchange saturation transfer (glucoCEST) MRI of its hydroxyl groups. Feasibility was established in phantoms as well as in vivo using two human breast cancer cell lines, MDA-MB-231 and MCF-7, implanted orthotopically in nude mice. PET and contrast-enhanced MRI were also acquired. RESULTS Both tumor types exhibited significant glucoCEST signal enhancement during systemic sugar infusion (mild hyperglycemia), allowing their noninvasive visualization. GlucoCEST showed differences between types, while PET and CE-MRI did not. Data are discussed in terms of signal contributions from the increased vascular volume in tumors and especially from the acidic extracellular extravascular space (EES), where glucoCEST signal is expected to be enhanced due to a slow down of hydroxyl proton exchange. CONCLUSIONS This observation opens up the possibility for using simple non-toxic sugars as contrast agents for cancer detection with MRI by employing hydroxyl protons as a natural label.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
PET Tracers for Clinical Imaging of Breast Cancer. JOURNAL OF ONCOLOGY 2012; 2012:710561. [PMID: 22973310 PMCID: PMC3437678 DOI: 10.1155/2012/710561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/13/2012] [Indexed: 11/17/2022]
Abstract
Molecular imaging of breast cancer has undoubtedly permitted a substantial development of the overall diagnostic accuracy of this malignancy in the last years. Accurate tumour staging, design of individually suited therapies, response evaluation, early detection of recurrence and distant lesions have also evolved in parallel with the development of novel molecular imaging approaches. In this context, positron emission tomography (PET) can be probably seen as the most interesting molecular imaging technology with straightforward clinical application for such purposes. Dozens of radiotracers for PET imaging of breast cancer have been tested in laboratory animals. However, in this review we shall focus mainly in the smaller group of PET radiopharmaceuticals that have lead through into the clinical setting. PET imaging can be used to target general metabolic phenomena related to tumoural transformation, including glucose metabolism and cell proliferation, but can also be directed to specific hormone receptors that are characteristic of the breast cancer cell. Many other receptors and transport molecules present in the tumour cells could also be of interest for imaging. Furthermore, molecules related with the tumour microenvironment, tumour induced angiogenesis or even hypoxia could also be used as molecular biomarkers for breast cancer imaging.
Collapse
|
15
|
Carroll L, Perumal M, Vasdev N, Robins E, Aboagye EO. Radiosynthesis and in vivo tumor uptake of 2-deoxy-2-[(18)F]fluoro-myo-inositol. Bioorg Med Chem Lett 2012; 22:6148-50. [PMID: 22944120 DOI: 10.1016/j.bmcl.2012.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
Inositols play an important role in membrane lipid metabolism and mitogenic signaling of most cancer cells. There is paucity of data on the distribution of radiolabelled inositols. Based on work previously carried out on 1-deoxy-1-[(18)F]fluoro-scyllo-inositol ([(18)F]2), we began a program of work to label myo-inositol (2-deoxy-2-[(18)F]fluoro-myo-inositol, [(18)F]1), the most abundant inositol in cells. Fluorination of a triflate precursor 4 afforded the desired [(18)F]1 following deprotection with a radiochemical yield of 8% n.d.c. [(18)F]1 showed higher uptake in vivo in a human breast cancer xenograft model, MDA-MB-231, compared to [(18)F]2. Thus, we have developed a new inositol radiotracer that could have utility for studying inositol uptake in tumors.
Collapse
Affiliation(s)
- Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Hammersmith Campus, Imperial College, London W12 0NN, UK
| | | | | | | | | |
Collapse
|
16
|
Ma K, Thomason LA, McLaurin J. scyllo-Inositol, Preclinical, and Clinical Data for Alzheimer’s Disease. CURRENT STATE OF ALZHEIMER'S DISEASE RESEARCH AND THERAPEUTICS 2012; 64:177-212. [DOI: 10.1016/b978-0-12-394816-8.00006-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|