1
|
Li Y, Daryaee F, Yoon GE, Noh D, Smith-Jones PM, Si Y, Walker SG, Turkman N, Meimetis L, Tonge PJ. Positron Emission Tomography Imaging of Staphylococcus aureus Infection Using a Nitro-Prodrug Analogue of 2-[ 18F]F- p-Aminobenzoic Acid. ACS Infect Dis 2020; 6:2249-2259. [PMID: 32672928 DOI: 10.1021/acsinfecdis.0c00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deep-seated bacterial infections caused by pathogens such as Staphylococcus aureus are difficult to diagnose and treat and are thus a major threat to human health. In previous work we demonstrated that positron emission tomography (PET) imaging with 2-[18F]F-p-aminobenzoic acid (2-[18F]F-PABA) could noninvasively identify, localize, and monitor S. aureus infection with excellent sensitivity and specificity in a rodent soft tissue infection model. However, 2-[18F]F-PABA is rapidly N-acetylated and eliminated, and in an attempt to improve radiotracer accumulation in bacteria we adopted a prodrug strategy in which the acid was protected by an ester and the amine was replaced with a nitro group. Metabolite analysis indicated that the nitro group of ethyl 2-[18F]fluoro-4-nitrobenzoate (2-[18F]F-ENB) is converted to the corresponding amine by bacteria-specific nitroreductases while the ester is hydrolyzed in vivo into the acid. PET/CT imaging of 2-[18F]F-ENB and the corresponding acid 2-[18F]F-NB in a rat soft tissue infection model demonstrated colocalization of the radiotracer with the bioluminescent signal arising from S. aureus Xen29, and demonstrated that the tracer could differentiate S. aureus infection from sterile inflammation. Significantly, the accumulation of both 2-[18F]F-ENB and 2-[18F]F-NB at the site of infection was 17-fold higher than at the site of sterile inflammation compared to 8-fold difference observed for 2-[18F]F-PABA, supporting the proposal that the active radiotracer in vivo is 2-[18F]F-NB. Collectively, these data suggest that 2-[18F]F-ENB and 2-[18F]F-NB have the potential for translation to humans as a rapid, noninvasive diagnostic tool to identify and localize S. aureus infections.
Collapse
Affiliation(s)
- Yong Li
- Chronus Pharmaceuticals, 25 Health Sciences Drive, Stony Brook, New York 11790, United States
| | - Fereidoon Daryaee
- Chronus Pharmaceuticals, 25 Health Sciences Drive, Stony Brook, New York 11790, United States
| | - Grace E. Yoon
- The Facility for Experimental Radiopharmaceutical Manufacturing, Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Doyoung Noh
- The Facility for Experimental Radiopharmaceutical Manufacturing, Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Peter M. Smith-Jones
- The Facility for Experimental Radiopharmaceutical Manufacturing, Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Stephen G. Walker
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Labros Meimetis
- Chronus Pharmaceuticals, 25 Health Sciences Drive, Stony Brook, New York 11790, United States
| | - Peter J. Tonge
- Chronus Pharmaceuticals, 25 Health Sciences Drive, Stony Brook, New York 11790, United States
| |
Collapse
|
2
|
Yang C, Wang Q, Ding W. Recent progress in the imaging detection of enzyme activities in vivo. RSC Adv 2019; 9:25285-25302. [PMID: 35530057 PMCID: PMC9070033 DOI: 10.1039/c9ra04508b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Enzymatic activities are important for normal physiological processes and are also critical regulatory mechanisms for many pathologies. Identifying the enzyme activities in vivo has considerable importance in disease diagnoses and monitoring of the physiological metabolism. In the past few years, great strides have been made towards the imaging detection of enzyme activity in vivo based on optical modality, MRI modality, nuclear modality, photoacoustic modality and multifunctional modality. This review summarizes the latest advances in the imaging detection of enzyme activities in vivo reported within the past years, mainly concentrating on the probe design, imaging strategies and demonstration of enzyme activities in vivo. This review also highlights the potential challenges and the further directions of this field.
Collapse
Affiliation(s)
- Chunjie Yang
- College of Health Science, Yuncheng Polytechnic College Yuncheng Shanxi 044000 PR China
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University Yangling Shaanxi 712100 PR China
| |
Collapse
|
3
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
4
|
Diamagnetic Imaging Agents with a Modular Chemical Design for Quantitative Detection of β-Galactosidase and β-Glucuronidase Activities with CatalyCEST MRI. Bioconjug Chem 2016; 27:2549-2557. [PMID: 27657647 PMCID: PMC6013409 DOI: 10.1021/acs.bioconjchem.6b00482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging agents for the noninvasive in vivo detection of enzyme activity in preclinical and clinical settings could have fundamental implications in the field of drug discovery. Furthermore, a new class of targeted prodrug treatments takes advantage of high enzyme activity to tailor therapy and improve treatment outcomes. Herein, we report the design and synthesis of new magnetic resonance imaging (MRI) agents that quantitatively detect β-galactosidase and β-glucuronidase activities by measuring changes in chemical exchange saturation transfer (CEST). Based on a modular approach, we incorporated the enzymes' respective substrates to a salicylate moiety with a chromogenic spacer via a carbamate linkage. This furnished highly selective diamagnetic CEST agents that detected and quantified enzyme activities of glycoside hydrolase enzymes. Michaelis-Menten enzyme kinetics studies were performed by monitoring catalyCEST MRI signals, which were validated with UV-vis assays.
Collapse
|
5
|
Ribeiro Morais G, Falconer RA, Santos I. Carbohydrate-Based Molecules for Molecular Imaging in Nuclear Medicine. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|