1
|
Lin Y, Pan Y, Zhang J, Zhou B, Hou G, Gao F. Preparation and preclinical evaluation of 68Ga-labeled alendronate analogs for diagnosis of bone metastases. Dalton Trans 2025; 54:2886-2895. [PMID: 39801460 DOI: 10.1039/d4dt03159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Bone is one of the most common target organs for distant metastases of solid tumors, which imposes a heavy burden on society. Early diagnosis of bone metastases is of great significance and positron emission tomography (PET) imaging plays an important role in the diagnosis of bone metastases. PET tracers applied for diagnosing bone metastases are constantly being updated, but they all have certain limitations like a relatively low bone/kidney ratio or no capacity to label therapeutic radionuclides. Alendronate, a representative bisphosphonate (BP), has been usually considered the standard clinical treatment for bone related diseases. In this study, alendronate was strategically modified with different linkers in an attempt to improve target/non-target ratios and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was used as the chelator. Finally, three 68Ga-labeled tracers were successfully developed. The results showed that [68Ga]Ga-AABP1/2/3 all exhibited high radiochemical purity, biosafety, and excellent stability. In the biodistribution study of normal BALB/c mice, [68Ga]Ga-AABP3, when modified with phenylalanine and β-alanine as the linker, showed the highest bone/non-bone ratio at 1.5 h. In micro-PET/CT imaging of normal BALB/c mice, [68Ga]Ga-AABP3 showed the highest SUVmax value at the bones (2.24 ± 0.16 at 1.5 h). In micro-PET/CT imaging of the mouse model of bone metastases, compared with [68Ga]Ga-AABP1 and [68Ga]Ga-AABP2, the SUVmax in the foci after injection of [68Ga]Ga-AABP3 was the highest (2.64 ± 0.08 at 0.5 h and 2.67 ± 0.10 at 1.5 h), significantly higher than that of the contralateral normal bone. Besides, [68Ga]Ga-AABP3 showed the highest tumor/non-tumor ratio at 1.5 h. The results suggest that [68Ga]Ga-AABP3 has the potential for diagnosis of bone metastases. Furthermore, AABP3 with the chelator DOTA could also be labeled with 177Lu or 225Ac, providing possibility for further application in radioligand therapy.
Collapse
Affiliation(s)
- Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Jinglin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Souche C, Fouillet J, Rubira L, Donzé C, Sallé A, Dromard Y, Deshayes E, Fersing C. Towards Optimal Automated 68Ga-Radiolabeling Conditions of the DOTA-Bisphosphonate BPAMD Without Pre-Purification of the Generator Eluate. J Labelled Comp Radiopharm 2024; 67:441-453. [PMID: 39568296 PMCID: PMC11641010 DOI: 10.1002/jlcr.4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
DOTA-functionalized bisphosphonates can be useful tools for PET imaging of bone metastases when radiolabeled with 68Ga. Moreover, the versatility of DOTA allows the complexation of radiometals with therapeutic applications (e.g., 177Lu), positioning these bisphosphonates as attractive theranostic agents. Among these molecules, BPAMD is a compound whose radiolabeling with 68Ga has already been described, but only through manual methods. Thus, a fully automated protocol for 68Ga radiolabeling of BPAMD on the GAIA® ± LUNA® synthesis module was designed, and a thorough study of the radiolabeling conditions was undertaken. [68Ga]Ga-BPAMD was produced in good radiochemical purity (> 93%) and high radiochemical yield (> 91%) using 0.3 M HEPES buffer. The nature of the reaction vessel showed no significant effect on the radiolabeling outcome. Similarly, addition of an antiradiolysis compound to the reaction medium did not significantly improve the already excellent stability of [68Ga]Ga-BPAMD over time. The radiolabeled product obtained by automated synthesis was evaluated in vivo in healthy mice and confirmed high accumulation in the joints and along the backbone.
Collapse
Affiliation(s)
- Céleste Souche
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Audrey Sallé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Yann Dromard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM)Université de MontpellierMontpellierFrance
- IBMM, Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|
3
|
Souche C, Fouillet J, Rubira L, Donzé C, Deshayes E, Fersing C. Bisphosphonates as Radiopharmaceuticals: Spotlight on the Development and Clinical Use of DOTAZOL in Diagnostics and Palliative Radionuclide Therapy. Int J Mol Sci 2023; 25:462. [PMID: 38203632 PMCID: PMC10779041 DOI: 10.3390/ijms25010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bisphosphonates are therapeutic agents that have been used for almost five decades in the treatment of various bone diseases, such as osteoporosis, Paget disease and prevention of osseous complications in cancer patients. In nuclear medicine, simple bisphosphonates such as 99mTc-radiolabelled oxidronate and medronate remain first-line bone scintigraphic imaging agents for both oncology and non-oncology indications. In line with the growing interest in theranostic molecules, bifunctional bisphosphonates bearing a chelating moiety capable of complexing a variety of radiometals were designed. Among them, DOTA-conjugated zoledronate (DOTAZOL) emerged as an ideal derivative for both PET imaging (when radiolabeled with 68Ga) and management of bone metastases from various types of cancer (when radiolabeled with 177Lu). In this context, this report provides an overview of the main medicinal chemistry aspects concerning bisphosphonates, discussing their roles in molecular oncology imaging and targeted radionuclide therapy with a particular focus on bifunctional bisphosphonates. Particular attention is also paid to the development of DOTAZOL, with emphasis on the radiochemistry and quality control aspects of its preparation, before outlining the preclinical and clinical data obtained so far with this radiopharmaceutical candidate.
Collapse
Affiliation(s)
- Céleste Souche
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
4
|
Keeling GP, Baark F, Katsamenis OL, Xue J, Blower PJ, Bertazzo S, T M de Rosales R. 68Ga-bisphosphonates for the imaging of extraosseous calcification by positron emission tomography. Sci Rep 2023; 13:14611. [PMID: 37669973 PMCID: PMC10480432 DOI: 10.1038/s41598-023-41149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Radiolabelled bisphosphonates (BPs) and [18F]NaF (18F-fluoride) are the two types of radiotracers available to image calcium mineral (e.g. bone), yet only [18F]NaF has been widely explored for the non-invasive molecular imaging of extraosseous calcification (EC) using positron emission tomography (PET) imaging. These two radiotracers bind calcium mineral deposits via different mechanisms, with BPs chelating to calcium ions and thus being non-selective, and [18F]NaF being selective for hydroxyapatite (HAp) which is the main component of bone mineral. Considering that the composition of EC has been reported to include a diverse range of non-HAp calcium minerals, we hypothesised that BPs may be more sensitive for imaging EC due to their ability to bind to both HAp and non-HAp deposits. We report a comparison between the 68Ga-labelled BP tracer [68Ga]Ga-THP-Pam and [18F]NaF for PET imaging in a rat model of EC that develops macro- and microcalcifications in several organs. Macrocalcifications were identified using preclinical computed tomography (CT) and microcalcifications were identified using µCT-based 3D X-ray histology (XRH) on isolated organs ex vivo. The morphological and mineral analysis of individual calcified deposits was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). PET imaging and ex vivo analysis results demonstrated that while both radiotracers behave similarly for bone imaging, the BP-based radiotracer [68Ga]Ga-THP-Pam was able to detect EC more sensitively in several organs in which the mineral composition departs from that of HAp. Our results strongly suggest that BP-based PET radiotracers such as [68Ga]Ga-THP-Pam may have a particular advantage for the sensitive imaging and early detection of EC by being able to detect a wider array of relevant calcium minerals in vivo than [18F]NaF, and should be evaluated clinically for this purpose.
Collapse
Affiliation(s)
- George P Keeling
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Friedrich Baark
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Orestis L Katsamenis
- Faculty of Engineering and Physical Sciences, Highfield Campus, µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jing Xue
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Philip J Blower
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Sergio Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, Malet Place Engineering Building, London, WC1E 6BT, UK
| | - Rafael T M de Rosales
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
5
|
Vatsa R, Kaur D, Shekhar SS, Chhabra A, Chakraborty S, Dash A, Shukla J, Mittal BR. Comparison of 99m Tc-methylenediphosphonate and 68 Ga-BPAMD PET/computed tomography imaging in bone metastasis. Nucl Med Commun 2023; 44:463-470. [PMID: 36897059 DOI: 10.1097/mnm.0000000000001685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Bone is considered as the third most common site of metastases, besides lung and liver. Early detection of skeletal metastases aids in better management of skeletal-related events. In the present study cold kit-based 2,2 ' ,2 '' -(10-(2-((diphosphonomethyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (BPAMD) was labeled with 68 Ga. The radiolabeling parameters and clinical evaluation in patients with suspected bone metastases were compared with routinely used 99m Tc-methylenediphosphonate ( 99m Tc-MDP). METHODOLOGY The kit components of MDP were incubated with at room temperature for 10 min, followed by radiochemical purity testing using thin-layer chromatography. For radiolabeling of BPAMD, the cold kit components reconstituted in 400 μL of HPLC grade water were transferred and incubated with 68 GaCl 3 in the reactor vessel of the fluidic module at 95°C for 20 min. Radiochemical yield and purity were determined with instant thin-layer chromatography using 0.5 M sodium citrate as mobile phase. For clinical evaluation, patients ( n = 10) with suspected bone metastases were enrolled. 99m Tc-MDP and 68 Ga-BPAMD scans were performed on two different days in random order. Imaging outcomes were noted and compared. RESULTS Radiolabeling of both tracers is facile using cold kit, although BPAMD requires heating. The radiochemical purity was observed to be greater than 99% for all preparations. Both MDP and BPAMD detected skeletal lesions; however, additional lesions were detected in total of seven patients which were not visualized clearly on 99m Tc-MDP scan. CONCLUSION BPAMD can be easily tagged with 68 Ga using cold kits. The radiotracer is suitable and efficient for detection of bone metastases using PET/computed tomography.
Collapse
Affiliation(s)
- Rakhee Vatsa
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Damanpreet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Shashank Singh Shekhar
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Anupriya Chhabra
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | | | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Jaya Shukla
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
6
|
Radiometal-theranostics: the first 20 years*. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThis review describes the basic principles of radiometal-theranostics and its dawn based on the development of the positron-emitting 86Y and 86Y-labeled radiopharmaceuticals to quantify biodistribution and dosimetry of 90Y-labeled analogue therapeutics. The nuclear and inorganic development of 86Y (including nuclear and cross section data, irradiation, radiochemical separation and recovery) led to preclinical and clinical evaluation of 86Y-labeled citrate and EDTMP complexes and yielded organ radiation doses in terms of mGy/MBq 90Y. The approach was extended to [86/90Y]Y-DOTA-TOC, yielding again yielded organ radiation doses in terms of mGy/MBq 90Y. The review further discusses the consequences of this early development in terms of further radiometals that were used (68Ga, 177Lu etc.), more chelators that were developed, new biological targets that were addressed (SSTR, PSMA, FAP, etc.) and subsequent generations of radiometal-theranostics that resulted out of that.
Collapse
|
7
|
Preparation, Optimisation, and In Vitro Evaluation of [ 18F]AlF-NOTA-Pamidronic Acid for Bone Imaging PET. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227969. [PMID: 36432069 PMCID: PMC9696850 DOI: 10.3390/molecules27227969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
[18F]sodium fluoride ([18F]NaF) is recognised to be superior to [99mTc]-methyl diphosphate ([99mTc]Tc-MDP) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in bone imaging. However, there is concern that [18F]NaF uptake is not cancer-specific, leading to a higher number of false-positive interpretations. Therefore, in this work, [18F]AlF-NOTA-pamidronic acid was prepared, optimised, and tested for its in vitro uptake. NOTA-pamidronic acid was prepared by an N-Hydroxysuccinimide (NHS) ester strategy and validated by liquid chromatography-mass spectrometry analysis (LC-MS/MS). Radiolabeling of [18F]AlF-NOTA-pamidronic acid was optimised, and it was ensured that all quality control analysis requirements for the radiopharmaceuticals were met prior to the in vitro cell uptake studies. NOTA-pamidronic acid was successfully prepared and radiolabeled with 18F. The radiolabel was prepared in a 1:1 molar ratio of aluminium chloride (AlCl3) to NOTA-pamidronic acid and heated at 100 °C for 15 min in the presence of 50% ethanol (v/v), which proved to be optimal. The preliminary in vitro results of the binding of the hydroxyapatite showed that [18F]AlF-NOTA-pamidronic acid was as sensitive as [18F]sodium fluoride ([18F]NaF). Normal human osteoblast cell lines (hFOB 1.19) and human osteosarcoma cell lines (Saos-2) were used for the in vitro cellular uptake studies. It was found that [18F]NaF was higher in both cell lines, but [18F]AlF-NOTA-pamidronic acid showed promising cellular uptake in Saos-2. The preliminary results suggest that further preclinical studies of [18F]AlF-NOTA-pamidronic acid are needed before it is transferred to clinical research.
Collapse
|
8
|
Chhabra A, Thakur ML. Theragnostic Radionuclide Pairs for Prostate Cancer Management: 64Cu/ 67Cu, Can Be a Budding Hot Duo. Biomedicines 2022; 10:2787. [PMID: 36359312 PMCID: PMC9687163 DOI: 10.3390/biomedicines10112787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 08/26/2023] Open
Abstract
Prostate cancer (PCa) is one of the preeminent causes of mortality in men worldwide. Theragnostic, a combination of therapy and diagnostic, using radionuclide pairs to diagnose and treat disease, has been shown to be a promising approach for combating PCa. In PCa patients, bone is one of the most common sites of metastases, and about 90% of patients develop bone metastases. This review focuses on (i) clinically translated theragnostic radionuclide pairs for the management of PCa, (ii) radionuclide therapy of bone metastases in PCa, and (iii) a special emphasis on emerging theragnostic radionuclide pair, Copper-64/Copper-67 (64Cu/67Cu) for managing the disease.
Collapse
Affiliation(s)
- Anupriya Chhabra
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mathew L. Thakur
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Pazderová L, Benešová M, Havlíčková J, Vojtíčková M, Kotek J, Lubal P, Ullrich M, Walther M, Schulze S, Neuber C, Rammelt S, Pietzsch HJ, Pietzsch J, Kubíček V, Hermann P. Cyclam with a phosphinate-bis(phosphonate) pendant arm is a bone-targeting carrier of copper radionuclides. Dalton Trans 2022; 51:9541-9555. [PMID: 35670322 DOI: 10.1039/d2dt01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often slow down complex formation and decrease radiochemical yields. Nevertheless, their negative effect on complexation rates may be mitigated by using a suitable spacer between bis(phosphonate) and the macrocycle. To demonstrate the potential of bis(phosphonate) bearing macrocyclic ligands as a copper radioisotope carrier, we report the synthesis of a new cyclam derivative bearing a phosphinate-bis(phosphonate) pendant (H5te1PBP). The ligand showed a high selectivity to CuII over ZnII and NiII ions, and the bis(phosphonate) group was not coordinated in the CuII complex, strongly interacting with other metal ions in solution. The CuII complex formed quickly, in 1 s, at pH 5 and at a millimolar scale. The complexation rates significantly differed under a ligand or metal ion excess due to the formation of reaction intermediates differing in their metal-to-ligand ratio and protonation state, respectively. The CuII-te1PBP complex also showed a high resistance to acid-assisted hydrolysis (t1/2 2.7 h; 1 M HClO4, 25 °C) and was effectively adsorbed on the hydroxyapatite surface. H5te1PBP radiolabeling with [64Cu]CuCl2 was fast and efficient, with specific activities of approximately 30 GBq 64Cu per 1 μmol of ligand (pH 5.5, room temperature, 30 min). In a pilot experiment, we further demonstrated the excellent suitability of [64Cu]CuII-te1PBP for imaging active bone compartments by dedicated small animal PET/CT in healthy mice and subsequently in a rat femoral defect model, in direct comparison with [18F]fluoride. Moreover, [64Cu]CuII-te1PBP showed a higher uptake in critical bone defect regions. Therefore, our study highlights the potential of [64Cu]CuII-te1PBP as a PET radiotracer for evaluating bone healing in preclinical and clinical settings with a diagnostic value similar to that of [18F]fluoride, albeit with a longer half-life (12.7 h) than 18F (1.8 h), thereby enabling extended observation times.
Collapse
Affiliation(s)
- Lucia Pazderová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Martina Benešová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic. .,Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Jana Havlíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Margareta Vojtíčková
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Přemysl Lubal
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01069 Dresden, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
10
|
Guo R, Meng X, Wang F, Yu J, Xie Q, Zhao W, Zhu L, Kung HF, Yang Z, Li N. 68Ga-P15-041, A Novel Bone Imaging Agent for Diagnosis of Bone Metastases. Front Oncol 2021; 11:766851. [PMID: 34900716 PMCID: PMC8654731 DOI: 10.3389/fonc.2021.766851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives 68Ga-P15-041 (68Ga-HBED-CC-BP) is a novel bone-seeking PET radiotracer, which can be readily prepared by using a simple kit formulation and an in-house 68Ga/68Ge generator. The aim of this study is to assess the potential human application of 68Ga-P15-041 for clinical PET/CT imaging and to compare its efficacy to detect bone metastases of different cancers with 99mTc-MDP whole-body bone scintigraphy (WBBS). Methods Initial kinetic study using Patlak analysis and parametric maps were performed in five histopathologically proven cancer patients (three males, two females) using 68Ga-P15-041 PET/CT scan only. Another group of 51 histopathologically proven cancer patients (22 males, 29 females) underwent both 99mTc-MDP WBBS and 68Ga-P15-041 PET/CT scans within a week, sequentially. Using either pathology examination or follow-up CT or MRI scans as the gold standard, the diagnostic efficacy and receiver operating characteristic curve (ROC) of the two methods in identifying bone metastases were compared (p <0.05, statistically significant). Results Fifty-one patients were imaged, and 174 bone metastatic sites were identified. 68Ga-P15-041 PET/CT and 99mTc-MDP WBBS detected 162 and 81 metastases, respectively. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 68Ga-P15-041 PET/CT and 99mTc-MDP WBBS were 93.1% vs 81.8%, 89.8% vs 90.7%, 77.5% vs 69.2%, 97.2% vs 93.4% and 90.7% vs 88.4%, respectively. Our results showed that the mean of SUVmax was significantly higher in metastases than that in benign lesions, 15.1 ± 6.9 vs. 5.6 ± 1.3 (P <0.001). Using SUVmax = 7.6 as the cut-off value by PET/CT, it was possible to predict the occurrence of metastases (AUC = 0.976; P <0.001; 95% CI: 0.946–0.999). However, it was impossible to distinguish osteoblastic bone metastases from osteolytic bone lesions. Parametric maps based on Patlak analysis provided excellent images and highly valuable quantitative information. Conclusions 68Ga-P15-041 PET/CT, offering a rapid bone scan and high contrast images in minutes, is superior to the current method of choice in detecting bone metastases. It is reasonable to suggest that 68Ga-P15-041 PET/CT could become a valuable routine nuclear medicine procedure in providing excellent images for detecting bone metastases in cancer patients. 68Ga-P15-041 could become a valuable addition expanding the collection of 68Ga-based routine nuclear medicine procedures where 18F fluoride is not currently available.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fei Wang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiangyuan Yu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qing Xie
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education, Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
11
|
Keeling GP, Sherin B, Kim J, San Juan B, Grus T, Eykyn TR, Rösch F, Smith GE, Blower PJ, Terry SYA, T M de Rosales R. [ 68Ga]Ga-THP-Pam: A Bisphosphonate PET Tracer with Facile Radiolabeling and Broad Calcium Mineral Affinity. Bioconjug Chem 2021; 32:1276-1289. [PMID: 32786371 PMCID: PMC7611355 DOI: 10.1021/acs.bioconjchem.0c00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium minerals such as hydroxyapatite (HAp) can be detected noninvasively in vivo using nuclear imaging agents such as [18F]NaF (available from cyclotrons), for positron emission tomography (PET) and 99mTc-radiolabeled bisphosphonates (BP; available from 99mTc generators for single photon emission computed tomography (SPECT) or scintigraphy). These two types of imaging agents allow detection of bone metastases (based on the presence of HAp) and vascular calcification lesions (that contain HAp and other calcium minerals). With the aim of developing a cyclotron-independent PET radiotracer for these lesions, with broad calcium mineral affinity and simple one-step radiolabeling, we developed [68Ga]Ga-THP-Pam. Radiolabeling with 68Ga is achieved using a mild single-step kit (5 min, room temperature, pH 7) to high radiochemical yield and purity (>95%). NMR studies demonstrate that Ga binds via the THP chelator, leaving the BP free to bind to its biological target. [68Ga]Ga-THP-Pam shows high stability in human serum. The calcium mineral binding of [68Ga]Ga-THP-Pam was compared in vitro to two other 68Ga-BPs which have been successfully evaluated in humans, [68Ga]Ga-NO2APBP and [68Ga]Ga-BPAMD, as well as [18F]NaF. Interestingly, we found that all 68Ga-BPs have a high affinity for a broad range of calcium minerals implicated in vascular calcification disease, while [18F]NaF is selective for HAp. Using healthy young mice as a model of metabolically active growing calcium mineral in vivo, we compared the pharmacokinetics and biodistribution of [68Ga]Ga-THP-Pam with [18F]NaF as well as [68Ga]NO2APBP. These studies revealed that [68Ga]Ga-THP-Pam has high in vivo affinity for bone tissue (high bone/muscle and bone/blood ratios) and fast blood clearance (t1/2 < 10 min) comparable to both [68Ga]NO2APBP and [18F]NaF. Overall, [68Ga]Ga-THP-Pam shows high potential for clinical translation as a cyclotron-independent calcium mineral PET radiotracer, with simple and efficient radiochemistry that can be easily implemented in any radiopharmacy.
Collapse
Affiliation(s)
- George P Keeling
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Billie Sherin
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Belinda San Juan
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Tilmann Grus
- Department of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Thomas R Eykyn
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Frank Rösch
- Department of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Gareth E Smith
- Theragnostics Ltd, 2 Arlington Square, Bracknell, Berkshire RG12 1WA, U.K
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Samantha Y A Terry
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, U.K
| |
Collapse
|
12
|
Yadav MP, Ballal S, Meckel M, Roesch F, Bal C. [ 177Lu]Lu-DOTA-ZOL bone pain palliation in patients with skeletal metastases from various cancers: efficacy and safety results. EJNMMI Res 2020; 10:130. [PMID: 33113035 PMCID: PMC7593375 DOI: 10.1186/s13550-020-00709-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background [177Lu]Lu-DOTA-ZOL has shown promising results from the dosimetry and preclinical aspects, but data on its role in the clinical efficacy are limited. The objective of this study is to evaluate the efficacy and safety of [177Lu]Lu-DOTA-ZOL as a bone pain palliation agent in patients experiencing pain due to skeletal metastases from various cancers. Methods In total, 40 patients experiencing bone pain due to skeletal metastases were enrolled in this study. The patients were treated with a mean cumulative dose of 2.1 ± 0.6 GBq (1.3–2.7 GBq) [177Lu]Lu-DOTA-ZOL in a median follow-up duration of 10 months (IQR 8–14 months). The primary outcome endpoint was response assessment according to the visual analogue score (VAS). Secondary endpoints included analgesic score (AS), global pain assessment score, Eastern Cooperative Oncology Group Assessment performance status (ECOG), Karnofsky performance status, overall survival, and safety assessment by the National Cancer Institute’s Common Toxicity Criteria V5.0. Results In total, 40 patients (15 males and 25 females) with a mean age of 46.6 ± 15.08 years (range 24–78 years) were treated with either 1 (N = 15) or 2 (N = 25) cycles of [177Lu]Lu-DOTA-ZOL. According to the VAS response assessment criteria, complete, partial, and minimal responses were observed in 11 (27.5%), 20 (50%), and 5 patients (12.5%), respectively with an overall response rate of 90%. Global pain assessment criteria revealed complete, partial, minimal, and no response in 2 (5%), 25 (62.5%), 9 (22.5%), and 4 (10%) patients, respectively. Twenty-eight patients died and the estimated median overall survival was 13 months (95% CI 10–14 months). A significant improvement was observed in the VAS, AS, and ECOG status when compared to baseline. None of the patients experienced grade III/IV haematological, kidney, or hepatotoxicity due to [177Lu]Lu-DOTA-ZOL therapy. Conclusion [177Lu]Lu-DOTA-ZOL shows promising results and is an effective radiopharmaceutical in the treatment of bone pain due to skeletal metastases from various cancers.
Collapse
Affiliation(s)
- Madhav Prasad Yadav
- Department of Nuclear Medicine, Room No: 59-A, Thyroid Clinic, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, Room No: 59-A, Thyroid Clinic, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Marian Meckel
- Department of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55126, Mainz, Germany
| | - Frank Roesch
- Department of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55126, Mainz, Germany
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, Room No: 59-A, Thyroid Clinic, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
13
|
Chauhan K, Mann G, Jaswal AP, Ojha H, Mishra AK, Datta A. 68Ga-Labeled bismacrocyclic methylene phosphonate as potential bone seeking PET radiopharmaceutical. Bioorg Chem 2020; 104:104185. [PMID: 32911200 DOI: 10.1016/j.bioorg.2020.104185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Phosphonates-based agents are well-known bone-seeking radiopharmaceuticals with application in detection and therapy. With higher sensitivity and resolution offered by Positron Emission Tomography (PET), tracers based on this technique are gaining huge attention. 68Ga-based generator and radiotracers render independence from the on-site cyclotron. We report the development of 68Ga-labeled DOTA-based bismacrocyclic phosphonate derivative, for bone PET imaging. The synthesis and characterization of 68Ga- DO3P-AME-DO3P was carried out in > 95% purity. The radiotracer displayed high stability and low binding affinity (<3%) to blood serum. High in vitro binding affinity were observed for synthetic hydroxyapatite, SAOS-2, osteoclast and osteoblast cells. In vivo pharmacokinetics revealed fast washout with biphasic release pattern. The deposition of radiotracer in osseous tissues was high (Bone/Muscle ratio:18), as studied from the biodistribution studies. In vivo PET/CT and biodistribution analyses revealed the ability of 68Ga-DO3P-AME-DO3P to target and accumulate in bone, thus displaying its potential as a PET bone imaging agent.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig. SK Mazumdar Marg, Delhi 110054, India; Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 carretera Tijuana-Ensenada, 22860 Ensenada, Baja California, Mexico
| | - Garima Mann
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig. SK Mazumdar Marg, Delhi 110054, India
| | - Ambika Parmar Jaswal
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig. SK Mazumdar Marg, Delhi 110054, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig. SK Mazumdar Marg, Delhi 110054, India
| | - Anil K Mishra
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig. SK Mazumdar Marg, Delhi 110054, India.
| | - Anupama Datta
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig. SK Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
14
|
Chakraborty S, Shetty P, Chakravarty R, Vimalnath KV, Kumar C, Sarma HD, Vatsa R, Shukla J, Mittal BR, Dash A. Formulation of ‘ready-to-use’ human clinical doses of 177Lu-labeled bisphosphonate amide of DOTA using moderate specific activity 177Lu and its preliminary evaluation in human patient. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radiolabeled macrocyclic bisphosphonate ligands have recently been demonstrated to be highly efficacious in treatment of patients with painful bone metastases. Herein, we report a robust protocol for formulation of therapeutically relevant doses of 177Lu-labeled bisphosphonate amide of DOTA (BPAMD) using moderate specific activity 177Lu produced by direct (n,γ) route and its preliminary investigation in human patients. Doses (2.8 ± 0.2 GBq) were formulated with high radiochemical purity (98.3 ± 0.4 %) using a protocol optimized after extensive radiochemical studies. In vitro binding studies with mineralized osteosarcoma cells demonstrated specific binding of the radiotracer. Biodistribution studies in healthy Wistar rats demonstrated rapid skeletal accumulation with fast clearance from the non-target organs. In a patient administered with 555 MBq dose of 177Lu-BPAMD, intense radiotracer uptake was observed in the metastatic skeletal lesions with insignificant uptake in any other major non-targeted organs. Preliminary clinical investigations carried out after administration of 2.6 GBq of 177Lu-BPAMD revealed significant reduction in pain after 1 week without any adverse effects. The developed protocol for formulation of 177Lu-BPAMD doses using moderate specific activity carrier added 177Lu has been found to be effective and warrants wider investigations in patients with painful skeletal metastases.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai – 400094 , India
| | - Priyalata Shetty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai – 400094 , India
| | - K. V. Vimalnath
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - H. D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
| | - Rakhee Vatsa
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research , Chadigarh – 160012 , India
| | - Jaya Shukla
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research , Chadigarh – 160012 , India
| | - B. R. Mittal
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research , Chadigarh – 160012 , India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Trombay, Mumbai – 400085 , India
- Homi Bhabha National Institute , Anushaktinagar, Mumbai – 400094 , India
| |
Collapse
|
15
|
DOTA-ZOL: A Promising Tool in Diagnosis and Palliative Therapy of Bone Metastasis-Challenges and Critical Points in Implementation into Clinical Routine. Molecules 2020; 25:molecules25132988. [PMID: 32629930 PMCID: PMC7412164 DOI: 10.3390/molecules25132988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023] Open
Abstract
The novel compound 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-ZOL (DOTA-conjugated zoledronic acid) is a promising candidate for the diagnosis and therapy of bone metastasis. The combination of the published methodology for this bisphosphonate with pharmaceutical and regulatory requirements turned out to be unexpectedly challenging. The scope of this work is the presentation and discussion of problems encountered during this process. Briefly, the radiolabelling process and purification, as well as the quality control published, did not meet the expectations. The constant effort setting up an automated radiolabelling procedure resulted in (a) an enhanced manual method using coated glass reactors, (b) a combination of three different reliable radio thin-layer chromatography (TLC) methods instead of the published and (c) a preliminary radio high-pressure liquid chromatography (HPLC) method for identification of the compound. Additionally, an automated radiolabelling process was developed, but it requires further improvement, e.g., in terms of a reactor vessel or purification of the crude product. The published purification method was found to be unsuitable for clinical routine, and an intense screening did not lead to a satisfactory result; here, more research is necessary. To sum up, implementation of DOTA-ZOL was possible but revealed a lot of critical points, of which not all could be resolved completely yet.
Collapse
|
16
|
Ashhar Z, Yusof NA, Ahmad Saad FF, Mohd Nor SM, Mohammad F, Bahrin Wan Kamal WH, Hassan MH, Ahmad Hassali H, Al-Lohedan HA. Preparation, Characterization, and Radiolabeling of [ 68Ga]Ga-NODAGA-Pamidronic Acid: A Potential PET Bone Imaging Agent. Molecules 2020; 25:molecules25112668. [PMID: 32526838 PMCID: PMC7321328 DOI: 10.3390/molecules25112668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.
Collapse
Affiliation(s)
- Zarif Ashhar
- Chemistry Department, Faculty of Science, Putra Malaysia University, Selangor, Serdang 43400, Malaysia; (Z.A.); (S.M.M.N.)
- Pharmacy Department, National Cancer Institute, Putrajaya 62250, Malaysia
| | - Nor Azah Yusof
- Chemistry Department, Faculty of Science, Putra Malaysia University, Selangor, Serdang 43400, Malaysia; (Z.A.); (S.M.M.N.)
- Correspondence: (N.A.Y.); (F.M.); Tel.: +966-11-467-5998 (F.M.); Fax: +966-11-467-9972 (F.M.)
| | - Fathinul Fikri Ahmad Saad
- Centre for Diagnostic Nuclear Imaging (CDNI), Faculty of Medicine and Health Sciences, Putra Malaysia University, Selangor, Serdang 43400, Malaysia; (F.F.A.S.); (M.H.H.)
| | - Siti Mariam Mohd Nor
- Chemistry Department, Faculty of Science, Putra Malaysia University, Selangor, Serdang 43400, Malaysia; (Z.A.); (S.M.M.N.)
| | - Faruq Mohammad
- Surfactants Research Chair, Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (N.A.Y.); (F.M.); Tel.: +966-11-467-5998 (F.M.); Fax: +966-11-467-9972 (F.M.)
| | | | - Muhammad Hishar Hassan
- Centre for Diagnostic Nuclear Imaging (CDNI), Faculty of Medicine and Health Sciences, Putra Malaysia University, Selangor, Serdang 43400, Malaysia; (F.F.A.S.); (M.H.H.)
| | - Hazlina Ahmad Hassali
- Bahagian Teknologi Perubatan, Malaysia Nuclear Agency, Selangor, Kajang 43600, Malaysia; (W.H.B.W.K.); (H.A.H.)
| | - Hamad A. Al-Lohedan
- Surfactants Research Chair, Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
17
|
Doot RK, Young AJ, Daube-Witherspoon ME, Alexoff D, Labban KJ, Lee H, Wu Z, Zha Z, Choi SR, Ploessl KH, Schubert EK, Lee H, Zhu L, Reddin JS, Karp JS, Kung H, Pryma DA. Biodistribution, dosimetry, and temporal signal-to-noise ratio analyses of normal and cancer uptake of [ 68Ga]Ga-P15-041, a gallium-68 labeled bisphosphonate, from first-in-human studies. Nucl Med Biol 2020; 86-87:1-8. [PMID: 32361089 DOI: 10.1016/j.nucmedbio.2020.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION [68Ga]Ga-P15-041 ([68Ga]Ga-HBED-CC-BP) is a novel bone-seeking PET radiotracer that can be generator-produced. We undertook a Phase 0/I clinical trial to assess its potential for imaging bone metastases in prostate cancer including assessment of radiotracer biodistribution and dosimetry. METHODS Subjects with prostate cancer and known or suspected osseous metastatic disease were enrolled into one of two arms: dosimetry or dynamic. Dosimetry was performed with 6 whole body PET acquisitions and urine collection spanning 3 h; normal organ dosimetry was calculated using OLINDA/EXM. Dynamic imaging included a 60 min acquisition over a site of known or suspected disease followed by two whole body scans. Bootstrapping and subsampling of the acquired list-mode data were conducted to recommend image acquisition parameters for future clinical trials. RESULTS Up to 233 MBq (6.3 mCi) of [68Ga]Ga-P15-041 was injected into 12 enrolled volunteers, 8 in dosimetry and 4 in dynamic cohorts. Radiotracer accumulated in known bone lesions and cleared rapidly from blood and soft tissue. The highest individual organ dose was 0.135 mSv/MBq in the urinary bladder wall. The average effective dose was 0.0173 ± 0.0036 mSv/MBq. An average injected activity of 166.5 MBq (4.5 mCi) resulted in absorbed dose estimates of 22.5 mSv to the urinary bladder wall, 8.2 mSv to the kidneys, and an effective dose of 2.9 mSv. Lesion signal to noise ratios on images generated from subsampled data were significantly higher for injected activities above 74 MBq (2 mCi) and were also significantly higher for imaging at 90 min than at 180 min post-injection. CONCLUSIONS Dosimetry estimates are acceptable and [68Ga]Ga-P15-041 uptake characteristics in patients with confirmed bone metastases support its continued development. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Use of [68Ga]Ga-P15-041 would not require cyclotron infrastructure for manufacturing and distribution, allowing for improved patient access to a promising PET bone imaging agent.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Anthony J Young
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Kyle J Labban
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hwan Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Zehui Wu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Seok R Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Karl H Ploessl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Erin K Schubert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Lin Zhu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Janet S Reddin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hank Kung
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
18
|
Mitrofanov IA, Maruk AY, Larenkov AA, Kodina GE, Lunev AS, Luneva KA, Klementyeva OE, Tsebrikova GS, Baulin VE, Ragulin VV, Tsivadze AY. Evaluation of Applicability of Aminodiphosphonic Acids for the Development of Bone-Seeking 68Ga-Radiopharmaceuticals. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s107036322003010x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Baranyai Z, Tircsó G, Rösch F. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre Bracco Imaging spa Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Gyula Tircsó
- Department of Physical Chemistry Faculty of Science and Technology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Frank Rösch
- Institute of Nuclear Chemistry Johannes Gutenberg‐University of Mainz Fritz‐Strassmann‐Weg 2 55128 Mainz Germany
| |
Collapse
|
20
|
Jabeen N, Rasheed R, Rafique A, Murtaza G. The Established Nuclear Medicine Modalities for Imaging of Bone Metastases. Curr Med Imaging 2019; 15:819-830. [DOI: 10.2174/1573405614666180327122548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Background:
The skeleton is one of the frequent site of metastases in advanced cancer.
Prostate, breast and renal cancers mostly metastasize to bone.
Discussion:
Malignant tumors lead to significant morbidity and mortality. Identification of bone
lesions is a crucial step in diagnosis of disease at early stage, monitoring of disease progression and
evaluation of therapy. Diagnosis of cancer metastases is based on uptake of bone-targeted radioactive
tracer at different bone remodeling sites.
Conclusion:
This manuscript summarizes already established and evolving nuclear medicine modalities
(e.g. bone scan, SPECT, SPECT/CT, PET, PET/CT) for imaging of bone metastases.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad, Pakistan
| | - Rashid Rasheed
- Institute of Nuclear Medicines, Oncology and Radiations (INOR), Ayub Medical Hospital, Abbottabad, Pakistan
| | - Asma Rafique
- Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad, Pakistan
| |
Collapse
|
21
|
Zhang J, Singh A, Kulkarni HR, Schuchardt C, Müller D, Wester HJ, Maina T, Rösch F, van der Meulen NP, Müller C, Mäcke H, Baum RP. From Bench to Bedside-The Bad Berka Experience With First-in-Human Studies. Semin Nucl Med 2019; 49:422-437. [PMID: 31470935 DOI: 10.1053/j.semnuclmed.2019.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Precision oncology is being driven by rapid advances in novel diagnostics and therapeutic interventions, with treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations. Inherent in the theranostics paradigm is the assumption that diagnostic test results can precisely determine whether an individual is likely to benefit from a specific treatment. As part and integral in the current era of precision oncology, theranostics in the context of nuclear medicine aims to identify the appropriate molecular targets in neoplasms (diagnostic tool), so that the optimal ligands and radionuclides (therapeutic tool) with favorable labeling chemistry can be selected for personalized management of a specific disease, taking into consideration the specific patient, and subsequently monitor treatment response. Over the past two decades, the use of gallium-68 labeled peptides for somatostatin receptor (SSTR)-targeted PET/CT (or PET/MRI) imaging followed by lutetium-177 and yttrium-90 labeled SSTR-agonist for peptide receptor radionuclide therapy has demonstrated remarkable success in the management of neuroendocrine neoplasms, and paved the way to other indications of theranostics. Rapid advances are being made in the development of other peptide-based radiopharmaceuticals, small molecular-weight ligands and with newer radioisotopes with more favorable kinetics, potentially useful for theranostics strategies for the clinical application. The present review features the Bad Berka experience with first-in-human studies of new radiopharmaceuticals, for example, prostate-specific membrane antigen ligand, gastrin-releasing peptide receptor, neurotensin receptor 1 ligand, novel SSTR-targeting peptides and nonpeptide, and bone-seeking radiopharmaceuticals. Also new radioisotopes, for example, actinium (225Ac), copper (64Cu), scandium (44Sc), and terbium (152Tb/161Tb) will be discussed briefly demonstrating the development from basic science to precision oncology in the clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhang
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Aviral Singh
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Harshad R Kulkarni
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Christiane Schuchardt
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Dirk Müller
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Hans-J Wester
- Institute for Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland; (
- )Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Helmut Mäcke
- Department of Nuclear Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Richard P Baum
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany.
| |
Collapse
|
22
|
Preliminary results of biodistribution and dosimetric analysis of [ 68Ga]Ga-DOTA ZOL: a new zoledronate-based bisphosphonate for PET/CT diagnosis of bone diseases. Ann Nucl Med 2019; 33:404-413. [PMID: 30877560 DOI: 10.1007/s12149-019-01348-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Pre-clinical studies with gallium-68 zoledronate ([68Ga]Ga-DOTAZOL) have proposed it to be a potent bisphosphonate for PET/CT diagnosis of bone diseases and diagnostic counterpart to [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL. This study aims to be the first human biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL. METHODS Five metastatic skeletal disease patients (mean age: 72 years, M: F; 4:1) were injected with 150-190 MBq (4.05-5.14 mCi) of [68Ga]Ga-DOTAZOL i.v. Biodistribution of [68Ga]Ga-DOTAZOL was studied with PET/CT initial dynamic imaging for 30 min; list mode over abdomen (reconstructed as six images of 300 s) followed by static (skull to mid-thigh) imaging at 45 min and 2.5 h with Siemens Biograph 2 PET/CT camera. Also, blood samples (8 time points) and urine samples (2 time points) were collected over a period of 2.5 h. Total activity (MBq) in source organs was determined using interview fusion software (MEDISO Medical Imaging Systems, Budapest, Hungary). A blood-based method for bone marrow self-dose determination and a trapezoidal method for urinary bladder contents residence time calculation were used. OLINDA/EXM version 2.0 software (Hermes Medical Solutions, Stockholm, Sweden) was used to generate residence times for source organs, organ absorbed doses and effective doses. RESULTS High uptake in skeleton as target organ, kidneys and urinary bladder as organs of excretion and faint uptake in liver, spleen and salivary glands were seen. Qualitative and quantitative analysis supported fast blood clearance, high bone to soft tissue and lesion to normal bone uptake with [68Ga]Ga-DOTAZOL. Urinary bladder with the highest absorbed dose of 0.368 mSv/MBq presented the critical organ, followed by osteogenic cells, kidneys and red marrow receiving doses of 0.040, 0.031 and 0.027 mSv/MBq, respectively. The mean effective dose was found to be 0.0174 mSv/MBq which results in an effective dose of 2.61 mSv from 150 MBq. CONCLUSIONS Biodistribution of [68Ga]Ga-DOTAZOL was comparable to [18F]NaF, [99mTc]Tc-MDP and [68Ga]Ga-PSMA-617. With proper hydration and diuresis to reduce urinary bladder and kidney absorbed doses, it has clear advantages over [18F]NaF owing to its onsite, low-cost production and theranostic potential of personalized dosimetry for treatment with [177Lu]Lu-DOTAZOL and [225Ac]Ac-DOTAZOL.
Collapse
|
23
|
Tadayon N, Yousefnia H, Ramazani A, Zolghadri S, Alirezapour B, Jalilian AR, Afarideh H, Vaez-Tehrani M. Optimized Production and Biological Evaluation of 68Ga-PDTMP as a New Agent for PET Bone Scanning. J Med Imaging Radiat Sci 2019; 50:142-148. [DOI: 10.1016/j.jmir.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
|
24
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Guleria M, Das T, Amirdhanayagam J, Shinto AS, Kamaleshwaran KK, Pandian A, Sarma HD, Dash A. Convenient Formulation of 68Ga-BPAMD Patient Dose Using Lyophilized BPAMD Kit and 68Ga Sourced from Different Commercial Generators for Imaging of Skeletal Metastases. Cancer Biother Radiopharm 2019; 34:67-75. [DOI: 10.1089/cbr.2018.2605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Mohini Guleria
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | | | - Ajit S. Shinto
- Department of Nuclear Medicine and PET, Kovai Medical Center and Hospital, Coimbatore, India
| | | | - Arun Pandian
- Department of Nuclear Medicine and PET, Kovai Medical Center and Hospital, Coimbatore, India
| | - Haladhar D. Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
26
|
Preliminary dosimetric evaluation of 90Y-BPAMD as a potential agent for bone marrow ablative therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s146039691800047x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAimBone-seeking radiopharmaceuticals are potential therapeutic tools for bone marrow ablation in patients with multiple myeloma. In this procedure, estimation of radiation absorbed dose received by the target and non-target organs is one of the most important parameters that should be undertaken. This research revolves around the absorbed dose to human organs after 90Y-BPAMD injection.Materials and methods90Y-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (90Y-BPAMD) complex was successfully prepared under optimised conditions. The human absorbed dose of the complex was estimated based on the biodistribution data on rats using the radiation-absorbed dose-assessment resource method. The target to non-target absorbed dose ratios for the complex was compared with the ratios for 166Ho-DOTMP, as the main radiopharmaceutical for bone marrow ablation.ResultsAs expected, the highest amounts of absorbed dose were observed in the bone surface and the bone marrow with 2·52 and 2·29 mGy/MBq, respectively. The red marrow to the most organ absorbed dose ratios for 90Y-BPAMD are much higher than the ratios for 166Ho-DOTMP.Findings90Y-BPAMD has interesting characteristics compared with 166Ho-DOTMP and can be considered as a high potential agent for bone marrow ablative therapy of the patient with multiple myeloma.
Collapse
|
27
|
Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Chakraborty S, Goswami D, Chakravarty R, Mohammed SK, Sarma HD, Dash A. Syntheses and evaluation of 68
Ga- and 153
Sm-labeled DOTA-conjugated bisphosphonate ligand for potential use in detection of skeletal metastases and management of pain arising from skeletal metastases. Chem Biol Drug Des 2018; 92:1618-1626. [DOI: 10.1111/cbdd.13327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 04/06/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Sudipta Chakraborty
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre (BARC); Trombay, Mumbai Maharashtra India
- Homi Bhabha National Institute; Anushakti Nagar, Mumbai Maharashtra India
| | - Dibakar Goswami
- Homi Bhabha National Institute; Anushakti Nagar, Mumbai Maharashtra India
- Bio Organic Division; Bhabha Atomic Research Centre (BARC); Trombay, Mumbai Maharashtra India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre (BARC); Trombay, Mumbai Maharashtra India
- Homi Bhabha National Institute; Anushakti Nagar, Mumbai Maharashtra India
| | - Sahiralam Khan Mohammed
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre (BARC); Trombay, Mumbai Maharashtra India
| | - Haladhar Deb Sarma
- Radiation Biology and Health Sciences Division; Bhabha Atomic Research Centre (BARC); Trombay, Mumbai Maharashtra India
| | - Ashutosh Dash
- Radiopharmaceuticals Division; Bhabha Atomic Research Centre (BARC); Trombay, Mumbai Maharashtra India
- Homi Bhabha National Institute; Anushakti Nagar, Mumbai Maharashtra India
| |
Collapse
|
29
|
Marzook EA, Talaat HM, Challan SB. Comparative Biological Evaluation of 99mTc-Timonacic Acid Prepared Using Different Reducing Agents as a Complex for Hepatobiliary Imaging. RADIOCHEMISTRY 2018. [DOI: 10.1134/s1066362218030141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Motaleb MA, Sanad MH, Selim AA, El-Tawoosy M, Abd-Allah M. Synthesis, Characterization, and Radiolabeling of Heterocyclic Bisphosphonate Derivative as a Potential Agent for Bone Imaging. RADIOCHEMISTRY 2018; 60:201-207. [DOI: 10.1134/s106636221802011x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 09/02/2023]
|
31
|
Evaluation of Ga-DOTA-(D-Asp) n as bone imaging agents: D-aspartic acid peptides as carriers to bone. Sci Rep 2017; 7:13971. [PMID: 29070853 PMCID: PMC5656653 DOI: 10.1038/s41598-017-14149-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
67Ga-DOTA-(L-Asp)11 and 67Ga-DOTA-(L-Asp)14, which have been developed as bone imaging agents, showed a high accumulation in bone and a rapid blood clearance in mice. However, peptides composed of D-amino acids are more stable in vivo than those composed of their L-equivalents. In this study, 67Ga-DOTA-(D-Asp)n (n = 2, 5, 8, 11, or 14) were synthesized using the Fmoc-based solid-phase methodology and evaluated. In hydroxyapatite binding assay, binding of 67Ga-DOTA-(D-Asp)n tended to increase with increasing length of the amino acid chain. 67Ga-DOTA-(D-Asp)11 and 67Ga-DOTA-(D-Asp)14 caused a high accumulation of radioactivity in the bones of the mice. However, the results for 67Ga-DOTA-(D-Asp)n and 67Ga-DOTA-(L-Asp)n were comparable. In urine analyses, the proportion of intact complex after injection of 67Ga-DOTA-(D-Asp)14 was significantly higher than that of 67Ga-DOTA-(L-Asp)14. Although 67Ga-DOTA-(D-Asp)14 was more stable than 67Ga-DOTA-(L-Asp)14, the properties of 67Ga-DOTA-(D-Asp)n and 67Ga-DOTA-(L-Asp)n as bone imaging agents may be comparable.
Collapse
|
32
|
Jaswal AP, Meena VK, Prakash S, Pandey A, Singh B, Mishra AK, Hazari PP. [ 68Ga]/[ 188Re] Complexed [CDTMP] Trans-1,2-Cyclohexyldinitrilotetraphosphonic Acid As a Theranostic Agent for Skeletal Metastases. Front Med (Lausanne) 2017. [PMID: 28649566 PMCID: PMC5465288 DOI: 10.3389/fmed.2017.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Metastasis of the osseous tissue is one of the frequent and severe aggravations as a result of several neoplastic conditions, such as metabolic disorders, infections, and cancer. The objective of this study was to evaluate the pertinence of [68Ga]-trans-1,2-cyclohexyldinitrilo tetramethylene phosphonic acid (CDTMP) as a potential bone imaging agent for positron emission tomography (PET) applications as well as to assess [188Re]-CDTMP for bone pain palliation in metastatic skeletal disorders. Methods 68Ga complex of CDTMP was prepared at 80°C at pH 3.5, and 188Re complex of CDTMP was prepared at room temperature. [68Ga]-CDTMP complex was investigated as PET tracer while the therapeutic efficacy was assessed for [188Re]-CDTMP. Labeling efficiency, biodistribution, myelotoxicity, and imaging studies were carried out for the complexes synthesized. Both PET and MicroPET imaging studies were performed for [68Ga]-CDTMP whereas SPECT acquisitions were acquired for [188Re]-CDTMP. Data were analyzed semiquantitatively for all the scintigraphic scans obtained. Results The radiolabeling efficiency was observed to be >70% for [68Ga]-CDTMP. High bone uptake of [68Ga]-CDTMP as compared to contralateral tissue was found in PET imaging in Balb/C mice and New Zealand rabbit; the similar result for bone uptake was correlated in the biodistribution study of the compound in BALB/c mice at different time intervals. Biodistribution experiments carried out in mice showed maximum uptake of 6.12 ± 1.22%ID/g at 45 min postinjection. For [188Re]-CDTMP, total skeletal uptake was 8.12 ± 1.11%ID/g observed at 1 h postinjection from biodistribution data. High renal uptake confirms renal route of excretion. A good hydroxyapatite binding too was seen for both the complexes. No evidence of destruction or adverse functioning of vital organs was observed for the 188Re complex. Conclusion [68Ga]-CDTMP complex can be used as a promising PET bone imaging agent and [188Re]-CDTMP as a surrogate moiety for therapeutic application. Owing to the short half-life of 68Ga (68 min), cyclotron-independent radiopharmacy, fast clearance, and rapid renal excretion as evidenced in preclinical animal models. Very low myelotoxicity and highly selective bone uptake prove the potential of [188Re]-CDTMP for therapeutic application.
Collapse
Affiliation(s)
- Ambika P Jaswal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Virendra K Meena
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Surbhi Prakash
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ankita Pandey
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Puja P Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
33
|
Pfannkuchen N, Meckel M, Bergmann R, Bachmann M, Bal C, Sathekge M, Mohnike W, Baum RP, Rösch F. Novel Radiolabeled Bisphosphonates for PET Diagnosis and Endoradiotherapy of Bone Metastases. Pharmaceuticals (Basel) 2017; 10:ph10020045. [PMID: 28524118 PMCID: PMC5490402 DOI: 10.3390/ph10020045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023] Open
Abstract
Bone metastases, often a consequence of breast, prostate, and lung carcinomas, are characterized by an increased bone turnover, which can be visualized by positron emission tomography (PET), as well as single-photon emission computed tomography (SPECT). Bisphosphonate complexes of 99mTc are predominantly used as SPECT tracers. In contrast to SPECT, PET offers a higher spatial resolution and, owing to the 68Ge/68Ga generator, an analog to the established 99mTc generator exists. Complexation of Ga(III) requires the use of chelators. Therefore, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), NOTA (1,4,7-triazacyclododecane-1,4,7-triacetic acid), and their derivatives, are often used. The combination of these macrocyclic chelators and bisphosphonates is currently studied worldwide. The use of DOTA offers the possibility of a therapeutic application by complexing the β-emitter 177Lu. This overview describes the possibility of diagnosing bone metastases using [68Ga]Ga-BPAMD (68Ga-labeled (4-{[bis-(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl)acetic acid) as well as the successful application of [177Lu]Lu-BPAMD for therapy and the development of new diagnostic and therapeutic tools based on this structure. Improvements concerning both the chelator and the bisphosphonate structure are illustrated providing new 68Ga- and 177Lu-labeled bisphosphonates offering improved pharmacological properties.
Collapse
Affiliation(s)
- Nina Pfannkuchen
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany.
| | - Marian Meckel
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany.
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- University Cancer Center (UCC) Carl Gustav Carus, Tumorimmunology, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Chandrasekhar Bal
- Department of Nuclear Medicine & PET, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa.
| | - Wolfgang Mohnike
- Diagnostisch Therapeutisches Zentrum, DTZ am Frankfurter Tor, Kadiner Straße 23, 10243 Berlin, Germany.
| | - Richard P Baum
- Department of Nuclear Medicine, Center for PET/CT, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99438 Bad Berka, Germany.
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany.
| |
Collapse
|
34
|
Chakravarty R, Chakraborty S, Radhakrishnan ER, Kamaleshwaran K, Shinto A, Dash A. Clinical 68Ga-PET: Is radiosynthesis module an absolute necessity? Nucl Med Biol 2017; 46:1-11. [DOI: 10.1016/j.nucmedbio.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/31/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
|
35
|
Rabiei A, Shamsaei M, Yousefnia H, Zolghadri S, Reza Jalilian A, Enayati R. Development and biological evaluation of 90Y-BPAMD as a novel bone seeking therapeutic Agent. RADIOCHIM ACTA 2016. [DOI: 10.1515/ract-2015-2561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nowadays, the bone-seeking radiopharmaceuticals play an important role in the treatment of the bone-related pathologies. Whereas various phosphonate ligands have already been identified, a DOTA-based bisphosphonate, 4-{[(bis(phosphonomethyl))carbamoyl]methyl}- 7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec- 1-yl (BPAMD) with better characteristics has recently been synthesized. In this study, 90Y-BPAMD was developed with radiochemical purity >98% and the specific activity of 3.52 TBq/mmol in the optimized conditions as a new bone-seeking therapeutic agent. The complex demonstrated significant stability at room temperature and in human serum even after 48 h. At even low amount of hydroxyapatite (5 mg), more than 90% binding to hydroxyapatite was observed. Biodistribution studies after injection of the complex into the Syrian rats showed major accumulation of the labelled compound in the bone tissue and an insignificant uptake in the other organs all the times after injection. Generally, 90Y-BPAMD demonstrated interesting characteristics compared to the other 90Y bone-seeking agents and even 166Ho-BPAMD, and can be considered as a new bone-seeking candidate for therapeutic applications.
Collapse
Affiliation(s)
- Ali Rabiei
- Energy Engineering and Physics Department, Amir Kabir University of Technology, Tehran, Iran (Islamic Republic of)
| | - Mojtaba Shamsaei
- Energy Engineering and Physics Department, Amir Kabir University of Technology, Tehran, Iran (Islamic Republic of)
| | - Hassan Yousefnia
- Nuclear Science and Technology Research Institute (NSTRI), 14155-1339 Tehran, Iran (Islamic Republic of)
| | - Samaneh Zolghadri
- Nuclear Science and Technology Research Institute (NSTRI), 14155-1339 Tehran, Iran (Islamic Republic of)
| | - Amir Reza Jalilian
- Nuclear Science and Technology Research Institute (NSTRI), 14155-1339 Tehran, Iran (Islamic Republic of)
| | - Razieh Enayati
- Faculty of Engineering, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran (Islamic Republic of)
| |
Collapse
|
36
|
Meckel M, Kubíček V, Hermann P, Miederer M, Rösch F. A DOTA based bisphosphonate with an albumin binding moiety for delayed body clearance for bone targeting. Nucl Med Biol 2016; 43:670-678. [PMID: 27560354 DOI: 10.1016/j.nucmedbio.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/19/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
Radiolabeled bisphosphonates are commonly used in the diagnosis and therapy of bone metastases. Blood clearance of bisphosphonates is usually fast and only 30%-50% of the injected activity is retained in the skeleton, while most of the activity is excreted by the urinary tract. A longer blood circulation may enhance accumulation of bisphosphonate compounds in bone metastases. Therefore, a chemically modified macrocyclic bisphosphonate derivative with an additional human albumin binding entity was synthesized and pharmacokinetics of its complex was evaluated. The DOTA-bisphosphonate conjugate BPAMD was compared against the novel DOTAGA-derived albumin-binding bisphosphonate DOTAGA(428-d-Lys)MBP (L1). The ligands were labeled with 68Ga(III) and were evaluated in in vitro binding studies to hydroxyapatite (HA) as well as to human serum albumin. The compounds were finally compared in in vivo PET and ex vivo organ distribution studies in small animals over 6h. Binding studies revealed a consistent affinity of both bisphosphonate tracers to HA. Small animal PET and ex vivo organ distribution studies showed longer blood retention of [68Ga]L1. [68Ga]BPAMD is initially more efficiently bound to the bone but skeletal accumulation of the modified compound and [68Ga]BPAMD equalized at 6h p.i. Ratios of femur epiphyseal plate to ordinary bone showed to be more favorable for [68Ga]L1 than for [68Ga]BPAMD due to the longer circulation time of the new tracer. Thus, the chemical modification of BPAMD toward an albumin-binding bisphosphonate, L1, resulted in a novel PET tracer which conserves advantages of both functional groups within one and the same molecule. The properties of this new diagnostic tracer are expected to be preserved in 177Lu therapeutic agent with the same ligand (a theranostic pair).
Collapse
Affiliation(s)
- Marian Meckel
- Institute of Nuclear Chemistry, Johannes-Gutenberg-University Mainz, Germany
| | - Vojtěch Kubíček
- Department of Inorganic Chemistry, Charles University, Prague, Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Charles University, Prague, Czech Republic
| | | | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes-Gutenberg-University Mainz, Germany
| |
Collapse
|
37
|
Passah A, Tripathi M, Ballal S, Yadav MP, Kumar R, Roesch F, Meckel M, Sarathi Chakraborty P, Bal C. Evaluation of bone-seeking novel radiotracer 68Ga-NO2AP-Bisphosphonate for the detection of skeletal metastases in carcinoma breast. Eur J Nucl Med Mol Imaging 2016; 44:41-49. [PMID: 27455986 DOI: 10.1007/s00259-016-3469-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The successful labelling of bisphosphonates (BP) with 68Ga using macrocyclic chelators such as the based triazacyclononane (NO2AP) is a step forward in the in-house availability of a novel bone-seeking PET radiopharmaceutical with dual advantage of PET/CT imaging and generator production. In this study, we compared the novel generator-based skeletal radiotracer 68Ga-1,4,7-triazacyclonone-1,4-diacetic acid (68Ga-NO2AP-BP) with sodium fluoride (18F-NaF) for the detection of skeletal metastases in breast cancer patients. In addition, dosimetric analysis of 68Ga-NO2AP-BP was performed in a subset of patients. METHODS This was a prospective study of histopathologically proven cases of breast cancer patients who were referred for bone scintigraphy and underwent positron emission tomography/computed tomography (PET/CT) with 18F-NaF and 68Ga-NO2AP-BP within a week in random order. The scans of each patient were compared both qualitatively for image quality and quantitatively for number of lesions and SUVmax of lesions. Dosimetric analysis was performed in five patients. Their PET/CT scans were acquired at multiple time points and urine and blood samples were collected. Dosimetric calculations were performed using OLINDA/EXM 1.1 software. Statistical analysis was done using Stata 13 (StataCorp) software package. An agreement analysis regarding number of lesions detected with the two skeletal radiotracers was carried out. RESULTS The image quality of 68Ga-NO2AP-BP PET/CT scans were comparable to that of 18F-NaF. There was no statistically significant difference in the SUVmax of lesions, normal bone and lesion to background ratio between the two skeletal radiotracers. There was good agreement in the number of lesions detected by both skeletal radiotracers. The mean whole body effective dose for 68Ga-NO2AP-BP was 0.00583 mSv/MBq and the effective dose equivalent was 0.0086 mSv/MBq. CONCLUSION The excellent lesion detection agreement between 68Ga-NO2AP-BP and 18F-NaF favours the former as an alternative for skeletal scintigraphy in centres without an on-site cyclotron. The favourable dosimetric results and its potential to be used as a theranostic agent makes it an important generator-based skeletal radiotracer.
Collapse
Affiliation(s)
- Averilicia Passah
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Madhav Prasad Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Rajeev Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Frank Roesch
- Nuclear Chemistry, Johannes-Gutenberg-University, Mainz, Germany
| | - Marian Meckel
- Nuclear Chemistry, Johannes-Gutenberg-University, Mainz, Germany
| | - Partha Sarathi Chakraborty
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
38
|
Fakhari A, Jalilian AR, Johari-Daha F, Shafiee-Ardestani M, Khalaj A. Preparation and Biological Study of (68)Ga-DOTA-alendronate. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2016; 4:98-105. [PMID: 27408898 PMCID: PMC4938880 DOI: 10.7508/aojnmb.2016.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective(s): In line with previous research on the development of conjugated bisphosphonate ligands as new bone-avid agents, in this study, DOTA-conjugated alendronate (DOTA-ALN) was synthesized and evaluated after labeling with gallium-68 (68Ga). Methods: DOTA-ALN was synthesized and characterized, followed by 68Ga-DOTA-ALN preparation, using DOTA-ALN and 68GaCl3 (pH: 4-5) at 92-95° C for 10 min. Stability tests, hydroxyapatite assay, partition coefficient calculation, biodistribution studies, and imaging were performed on the developed agent in normal rats. Results: The complex was prepared with high radiochemical purity (>99% as depicted by radio thin-layer chromatography; specific activity: 310-320 GBq/mmol) after solid phase purification and was stabilized for up to 90 min with a log P value of -2.91. Maximum ligand binding (65%) was observed in the presence of 50 mg of hydroxyapatite; a major portion of the activity was excreted through the kidneys. With the exception of excretory organs, gastrointestinal tract organs, including the liver, intestine, and colon, showed significant uptake; however, the bone uptake was low (<1%) at 30 min after the injection. The data were also confirmed by sequential imaging at 30-90 min following the intravenous injection. Conclusion: The high solubility and anionic properties of the complex led to major renal excretion and low hydroxyapatite uptake; therefore, the complex failed to demonstrate bone imaging behaviors.
Collapse
Affiliation(s)
- Ashraf Fakhari
- Tehran University of Medical Sciences, Faculty of Pharmacy, Tehran, Iran
| | - Amir R Jalilian
- Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | | | | | - Ali Khalaj
- Tehran University of Medical Sciences, Faculty of Pharmacy, Tehran, Iran
| |
Collapse
|
39
|
Vaez-Tehrani M, Zolghadri S, Yousefnia H, Afarideh H. Human absorbed dose estimation for a new (175)Yb-phosphonate based on rats data: Comparison with similar bone pain palliation agents. Appl Radiat Isot 2016; 115:55-60. [PMID: 27337650 DOI: 10.1016/j.apradiso.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Abstract
In this work, the absorbed dose to human organs for (175)Yb-BPAMD was evaluated based on the biodistribution studies in rats. The results showed that the bone surface would receive the highest absorbed dose after injection of (175)Yb-BPAMD with 13.32mGy/MBq, while the other organs receive insignificant absorbed dose. Also, the comparison of (175)Yb-BPAMD with other therapeutic phosphonate complexes demonstrated noticeable characteristics for this new agent. Generally, based on the obtained results, (175)Yb-BPAMD can be considered as a promising agent for bone pain palliative therapy in near future.
Collapse
Affiliation(s)
- Mahdokht Vaez-Tehrani
- Energy Engineering and Department of Physics, Amir Kabir University of Technology, Tehran, Iran
| | - Samaneh Zolghadri
- Nuclear Science and Technology Research Institute (NSTRI), 14155-1339 Tehran, Iran
| | - Hassan Yousefnia
- Nuclear Science and Technology Research Institute (NSTRI), 14155-1339 Tehran, Iran
| | - Hossein Afarideh
- Energy Engineering and Department of Physics, Amir Kabir University of Technology, Tehran, Iran
| |
Collapse
|
40
|
Ogawa K. Biocomplexes in radiochemistry. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev 2016; 99:12-27. [PMID: 26482186 DOI: 10.1016/j.addr.2015.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 01/07/2023]
Abstract
The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes.
Collapse
Affiliation(s)
- Lisa E Cole
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Tracy Vargo-Gogola
- Department of Biochemistry and Molecular Biology, Indiana University Simon Cancer Center, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
42
|
Wu Z, Zha Z, Choi SR, Plössl K, Zhu L, Kung HF. New (68)Ga-PhenA bisphosphonates as potential bone imaging agents. Nucl Med Biol 2016; 43:360-71. [PMID: 27260777 DOI: 10.1016/j.nucmedbio.2016.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In vivo positron emission tomography (PET) imaging of the bone using [(68)Ga]bisphosphonates may be a valuable tool for cancer diagnosis and monitoring therapeutic treatment. We have developed new [(68)Ga]bisphosphonates based on the chelating group, AAZTA (6-[bis(hydroxycarbonyl-methyl)amino]-1,4-bis(hydroxycarbonyl methyl)-6-methylperhydro-1,4-diazepine). METHOD Phenoxy derivative of AAZTA (2,2'-(6-(bis(carboxymethyl)amino)-6-((4-(2-carboxyethyl)phenoxy)methyl)-1,4-diazepane-1,4-diyl)diacetic acid), PhenA, 2, containing a bisphosphonate group (PhenA-BPAMD, 3, and PhenA-HBP, 4) was prepared. Labeling of these chelating agents with (68)Ga was evaluated. RESULTS The ligands reacted rapidly in a sodium acetate buffer with [(68)Ga]GaCl3 eluted from a commercially available (68)Ge/(68)Ga generator (pH4, >95% labeling at room temperature in 5min) to form [(68)Ga]PhenA-BPAMD, 3, and [(68)Ga]PhenA-HBP, 4. The improved labeling condition negates the need for further purification. The (68)Ga bisphosphonate biodistribution and autoradiography of bone sections in normal mice after an iv injection showed excellent bone uptake. CONCLUSION New (68)Ga labeled bisphosphonates may be useful as in vivo bone imaging agents in conjunction with positron emission tomography (PET).
Collapse
Affiliation(s)
- Zehui Wu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Karl Plössl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Lin Zhu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Vaez-Tehrani M, Zolghadri S, Afarideh H, Yousefnia H. Preparation and biological evaluation of 175Yb-BPAMD as a potential agent for bone pain palliation therapy. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Bergmann R, Meckel M, Kubíček V, Pietzsch J, Steinbach J, Hermann P, Rösch F. (177)Lu-labelled macrocyclic bisphosphonates for targeting bone metastasis in cancer treatment. EJNMMI Res 2016; 6:5. [PMID: 26780082 PMCID: PMC4715021 DOI: 10.1186/s13550-016-0161-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/05/2016] [Indexed: 11/24/2022] Open
Abstract
Background Metastatic bone lesion is a common syndrome of many cancer diseases in an advanced state. The major symptom is severe pain, spinal cord compression, and pathological fracture, associated with an obvious morbidity. Common treatments including systemic application of bisphosphonate drugs aim on pain reduction and on improving the quality of life of the patient. Particularly, patients with multiple metastatic lesions benefit from bone-targeting therapeutic radiopharmaceuticals. Agents utilizing beta-emitting radionuclides in routine clinical praxis are, for example, [89Sr]SrCl2 and [153Sm]Sm-EDTMP. No-carrier-added (n.c.a.) 177Lu is remarkably suitable for an application in this scope. Methods Five 1,4,7,10-tetraazacyclododecane N,N′,N′′,N′′-tetra-acetic acid (DOTA)- and DO2A-based bisphosphonates, including monomeric and dimeric structures and one 1,4,7-triazacyclononane-1,4-diacetic acid (NO2A) derivative, were synthesized and labelled with n.c.a. 177Lu. Radio-TLC and high-performance liquid chromatography (HPLC) methods were successfully established for determining radiochemical yields and for quality control. Their binding to hydroxyapatite was measured in vitro. Ex vivo biodistribution experiments and dynamic in vivo single photon computed tomography (SPECT)/CT measurements were performed in healthy rats for 5 min and 1 h periods. Data on %ID/g or standard uptake value (SUV) for femur, blood, and soft-tissue organs were analyzed and compared with [177Lu]citrate. Results Radiolabelling yields for [177Lu]Lu-DOTA and [177Lu]Lu-NO2A monomeric bisphosphonate complexes were >98 % within 15 min. The dimeric macrocyclic bisphosphonates showed a decelerated labelling kinetics, reaching a plateau after 30 min of 60 to 90 % radiolabelling yields. All 177Lu-bisphosphonate complexes showed exclusive accumulation in the skeleton. Blood clearance and renal elimination were fast. SUV data (all for 1 h p.i.) in the femur ranged from 3.34 to 5.67. The bone/blood ratios were between 3.6 and 135.6, correspondingly. 177Lu-bisphosphonate dimers showed a slightly higher bone accumulation (SUVfemur = 4.48 ± 0.38 for [177Lu]Lu-DO2A(PBP)2; SUVfemur = 5.41 ± 0.46 for [177Lu]Lu-DOTA(MBP)2) but a slower blood clearance (SUVblood = 1.25 ± 0.09 for [177Lu]Lu-DO2A(PBP)2; SUVblood = 1.43 ± 0.32 for [177Lu]Lu-DOTA(MBP)2). Conclusions Lu-complexes of macrocyclic bisphosphonates might become options for the therapy of skeletal metastases in the near future, since they show high uptake in bone together with a very low soft-tissue accumulation.
Collapse
Affiliation(s)
- Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Marian Meckel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Vojtěch Kubíček
- Faculty of Science, Department of Inorganic Chemistry, Charles University Prague, Prague, Czech Republic
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Steinbach
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Petr Hermann
- Faculty of Science, Department of Inorganic Chemistry, Charles University Prague, Prague, Czech Republic
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
45
|
Preparation, quality control and biodistribution assessment of 153Sm-BPAMD as a novel agent for bone pain palliation therapy. Ann Nucl Med 2015; 29:870-6. [DOI: 10.1007/s12149-015-1014-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
46
|
Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP. Appl Radiat Isot 2015; 104:128-35. [PMID: 26163291 DOI: 10.1016/j.apradiso.2015.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy.
Collapse
|
47
|
Yousefnia H, Zolghadri S, Sadeghi HR, Naderi M, Jalilian AR, Shanehsazzadeh S. Preparation and biological assessment of 177Lu-BPAMD as a high potential agent for bone pain palliation therapy: comparison with 177Lu-EDTMP. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4225-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Well-designed bone-seeking radiolabeled compounds for diagnosis and therapy of bone metastases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:676053. [PMID: 26075256 PMCID: PMC4446473 DOI: 10.1155/2015/676053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
Abstract
Bone-seeking radiopharmaceuticals are frequently used as diagnostic agents in nuclear medicine, because they can detect bone disorders before anatomical changes occur. Furthermore, their effectiveness in the palliation of metastatic bone cancer pain has been demonstrated in the clinical setting. With the aim of developing superior bone-seeking radiopharmaceuticals, many compounds have been designed, prepared, and evaluated. Here, several well-designed bone-seeking compounds used for diagnostic and therapeutic use, having the concept of radiometal complexes conjugated to carrier molecules to bone, are reviewed.
Collapse
|
49
|
Mirzaei A, Jalilian AR, Badbarin A, Mazidi M, Mirshojaei F, Geramifar P, Beiki D. Optimized production and quality control of 68Ga-EDTMP for small clinical trials. Ann Nucl Med 2015; 29:506-11. [DOI: 10.1007/s12149-015-0971-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/06/2015] [Indexed: 01/26/2023]
|
50
|
Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015; 115:2934-74. [PMID: 25865818 DOI: 10.1021/cr500171e] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - M R A Pillai
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - F F Russ Knapp
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| |
Collapse
|