1
|
Lin W, Huang C, Tan Z, Xu H, Wei W, Wang L. Cu II-bis(thioureido) Complex: A Potential Radiotracer for Detecting Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases. Semin Nucl Med 2025:S0001-2998(25)00035-2. [PMID: 40360341 DOI: 10.1053/j.semnuclmed.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases, characterized by progressive neuronal degeneration and associated with neuroinflammation and oxidative stress, present significant challenges in diagnosis and treatment. This review explores the potential of copper(II)-bis(thiosemicarbazone) complexes, particularly Cu-ATSM, as a dual-purpose radiopharmaceutical for imaging and therapeutic interventions. Cu-ATSM exhibits unique redox-dependent retention in pathological microenvironments, driven by mitochondrial dysfunction and hyper-reductive states, which enables the noninvasive detection of oxidative stress via positron emission tomography (PET). Preclinical studies demonstrate its efficacy in mitigating neuroinflammation by suppressing glial activation, reducing the secretion of pro-inflammatory cytokines (e.g., TNF-α, MCP-1), and increasing the expression of neuroprotective metallothionein-1 (MT1). Some Clinical research reveals elevated ⁶⁴Cu-ATSM uptake in Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) patients, correlating with disease severity and regional oxidative stress markers. Furthermore, Cu-ATSM derivatives show promise in modulating blood-brain barrier (BBB) permeability, enhancing amyloid-β clearance, and restoring copper homeostasis in ALS models. Despite these advances, limitations such as small cohort sizes and heterogeneity in clinical studies underscore the need for larger-scale validation. Multimodal imaging integrating PET and MRI, alongside novel structural analogs targeting Aβ plaques and redox imbalances, emerges as a strategic direction for future research. Collectively, Cu-ATSM represents a transformative tool for elucidating neuropathological mechanisms and advancing therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Weiyuan Lin
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chongyi Huang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, Institute of Clinical Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key laboratory of Basic and Translational Research on Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM (Traditional Chinese Medicine), Guangzhou, China.
| |
Collapse
|
2
|
Saha E, Shimochi S, Keller T, Eskola O, López-Picón F, Rajander J, Löyttyniemi E, Forsback S, Solin O, Grönroos TJ, Parikka V. Evaluation of PET imaging as a tool for detecting neonatal hypoxic-ischemic encephalopathy in a preclinical animal model. Exp Neurol 2024; 373:114673. [PMID: 38163475 DOI: 10.1016/j.expneurol.2023.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Hypoxic-ischemic encephalopathy due to insufficient oxygen delivery to brain tissue is a leading cause of death or severe morbidity in neonates. The early recognition of the most severely affected individuals remains a clinical challenge. We hypothesized that hypoxic-ischemic injury can be detected using PET radiotracers for hypoxia ([18F]EF5), glucose metabolism ([18F]FDG), and inflammation ([18F]F-DPA). METHODS A preclinical model of neonatal hypoxic-ischemic brain injury was made in 9-d-old rat pups by permanent ligation of the left common carotid artery followed by hypoxia (8% oxygen and 92% nitrogen) for 120 min. In vivo PET imaging was performed immediately after injury induction or at different timepoints up to 21 d later. After imaging, ex vivo brain autoradiography was performed. Brain sections were stained with cresyl violet to evaluate the extent of the brain injury and to correlate it with [18F]FDG uptake. RESULTS PET imaging revealed that all three of the radiotracers tested had significant uptake in the injured brain hemisphere. Ex vivo autoradiography revealed high [18F]EF5 uptake in the hypoxic hemisphere immediately after the injury (P < 0.0001), decreasing to baseline even 1 d postinjury. [18F]FDG uptake was highest in the injured hemisphere on the day of injury (P < 0.0001), whereas [18F]F-DPA uptake was evident after 4 d (P = 0.029), peaking 7 d postinjury (P < 0.0001), and remained significant 21 d after the injury. Targeted evaluation demonstrated that [18F]FDG uptake measured by in vivo imaging 1 d postinjury correlated positively with the brain volume loss detected 21 d later (r = 0.72, P = 0.028). CONCLUSION Neonatal hypoxic-ischemic brain injury can be detected using PET imaging. Different types of radiotracers illustrate distinct phases of hypoxic brain damage. PET may be a new useful technique, worthy of being explored for clinical use, to predict and evaluate the course of the injury.
Collapse
Affiliation(s)
- Emma Saha
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.
| | - Saeka Shimochi
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olli Eskola
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Francisco López-Picón
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Finland
| | - Tove J Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Vilhelmiina Parikka
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratories, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Valable S, Toutain J, Divoux D, Chazalviel L, Corroyer-Dulmont A, Chakhoyan A, Guillouet S, Bernaudin M, Barbier EL, Touzani O. Magnetic resonance imaging of hypoxia in acute stroke compared with fluorine-18 fluoromisonidazole-positron emission tomography: A cross-validation study? NMR IN BIOMEDICINE 2023; 36:e4858. [PMID: 36285719 DOI: 10.1002/nbm.4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Acute ischemic stroke results in an ischemic core surrounded by a tissue at risk, named the penumbra, which is potentially salvageable. One way to differentiate the tissues is to measure the hypoxia status. The purpose of the current study is to correlate the abnormal brain tissue volume derived from magnetic resonance-based imaging of brain oxygen saturation (St O2 -MRI) to the fluorine-18 fluoromisonidazole ([18 F]FMISO) positron emission tomography (PET) volume for hypoxia imaging validation, and to analyze the ability of St O2 -MRI to depict the different hypoxic tissue types in the acute phase of stroke. In a pertinent model of stroke in the rat, the volume of tissue with decreased St O2 -MRI signal and that with increased uptake of [18 F]FMISO were equivalent and correlated (r = 0.706; p = 0.015). The values of St O2 in the tissue at risk were significantly greater than those quantified in the core of the lesion, and were less than those for healthy tissue (52.3% ± 2.0%; 43.3% ± 1.9%, and 67.9 ± 1.4%, respectively). A threshold value for St O2 of ≈60% as the cut-off for the identification of the tissue at risk was calculated. Tissue volumes with reduced St O2 -MRI correlated with the final lesion (r = 0.964, p < 0.0001). The findings show that the St O2 -MRI approach is sensitive for the detection of hypoxia and for the prediction of the final lesion after stroke. Once validated in acute clinical settings, this approach might be used to enhance the stratification of patients for potential therapeutic interventions.
Collapse
Affiliation(s)
- Samuel Valable
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| | - Jérôme Toutain
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| | - Didier Divoux
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| | - Laurent Chazalviel
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| | | | - Ararat Chakhoyan
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| | - Stéphane Guillouet
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/LDM-TEP group, Caen, France
| | - Myriam Bernaudin
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Inserm, U1216, Grenoble, France
| | - Omar Touzani
- Normandie-Univ, UNICAEN, CEA, CNRS, GIP CYCERON, ISTCT/CERVOxy group, Caen, France
| |
Collapse
|
4
|
Xie F, Wei W. [ 64Cu]Cu-ATSM: an emerging theranostic agent for cancer and neuroinflammation. Eur J Nucl Med Mol Imaging 2022; 49:3964-3972. [PMID: 35918492 DOI: 10.1007/s00259-022-05887-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
5
|
Parrilha GL, dos Santos RG, Beraldo H. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Little PV, Arnberg F, Jussing E, Lu L, Ingemann Jensen A, Mitsios N, Mulder J, Tran TA, Holmin S. The cellular basis of increased PET hypoxia tracer uptake in focal cerebral ischemia with comparison between [ 18F]FMISO and [ 64Cu]CuATSM. J Cereb Blood Flow Metab 2021; 41:617-629. [PMID: 32423333 PMCID: PMC7922752 DOI: 10.1177/0271678x20923857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 11/16/2022]
Abstract
PET hypoxia imaging can assess tissue viability in acute ischemic stroke (AIS). [18F]FMISO is an established tracer but requires substantial accumulation time, limiting its use in hyperacute AIS. [64Cu]CuATSM requires less accumulation time and has shown promise as a hypoxia tracer. We compared these tracers in a M2-occlusion model (M2CAO) with preserved collateral blood flow. Rats underwent M2CAO and [18F]FMISO (n = 12) or [64Cu]CuATSM (n = 6) examinations. [64Cu]CuATSM animals were also examined with MRI. Pimonidazole was used as a surrogate for [18F]FMISO in an immunofluorescence analysis employed to profile levels of hypoxia in neurons (NeuN) and astrocytes (GFAP). There was increased [18F]FMISO uptake in the M2CAO cortex. No increase in [64Cu]CuATSM activity was found. The pimonidazole intensity of neurons and astrocytes was increased in hypoxic regions. The pimonidazole intensity ratio was higher in neurons than in astrocytes. In the majority of animals, immunofluorescence revealed a loss of astrocytes within the core of regions with increased pimonidazole uptake. We conclude that [18F]FMISO is superior to [64Cu]CuATSM in detecting hypoxia in AIS, consistent with an earlier study. [18F]FMISO may provide efficient diagnostic imaging beyond the hyperacute phase. Results do not provide encouragement for the use of [64Cu]CuATSM in experimental AIS.
Collapse
Affiliation(s)
- Philip V Little
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Neuroradiology, BioClinicum, Karolinska
University Hospital, Stockholm, Sweden
| | - Fabian Arnberg
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Neuroradiology, BioClinicum, Karolinska
University Hospital, Stockholm, Sweden
| | - Emma Jussing
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Radiopharmacy, Karolinska University Hospital,
Stockholm, Sweden
- The Department of Oncology and Pathology, Karolinska Institutet,
Stockholm Sweden
| | - Li Lu
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Radiopharmacy, Karolinska University Hospital,
Stockholm, Sweden
- The Department of Oncology and Pathology, Karolinska Institutet,
Stockholm Sweden
| | | | - Nicholas Mitsios
- The Department of Neuroscience, Karolinska Institutet,
Stockholm, Sweden
| | - Jan Mulder
- The Department of Neuroscience, Karolinska Institutet,
Stockholm, Sweden
| | - Thuy A Tran
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Radiopharmacy, Karolinska University Hospital,
Stockholm, Sweden
- The Department of Oncology and Pathology, Karolinska Institutet,
Stockholm Sweden
| | - Staffan Holmin
- The Department of Clinical Neuroscience, Karolinska Institutet,
Stockholm Sweden
- The Department of Neuroradiology, BioClinicum, Karolinska
University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Wang Z, Mascarenhas C, Jia X. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments. Transl Stroke Res 2020; 11:628-642. [PMID: 31939060 PMCID: PMC7347441 DOI: 10.1007/s12975-019-00765-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Positron emission tomography (PET) is widely used in clinical and animal studies, along with the development of diverse tracers. The biochemical characteristics of PET tracers may help uncover the pathophysiological consequences of cardiac arrest (CA) and ischemic stroke, which include cerebral ischemia and reperfusion, depletion of oxygen and glucose, and neuroinflammation. PubMed was searched for studies of the application of PET for "cardiac arrest," "ischemic stroke," and "targeted temperature management." Available studies were included and classified according to the biochemical properties involved and metabolic processes of PET tracers, and were summarized. The mechanisms of ischemic brain injuries were investigated by PET with various tracers to elucidate the pathological process from the initial decrease of cerebral blood flow (CBF) to the subsequent abnormalities in energy and oxygen metabolism, to the monitoring of inflammation. In general, the trends of cerebral blood flow and oxygen metabolism after ischemic attack are not unidirectional but closely related to the time point of injury and recovery. Glucose metabolism after injury showed significant differences in different brain regions whereas global cerebral metabolic rate of glucose (CMRglc) declined. PET monitoring of neuroinflammation shows comparable efficacy to immunostaining. The technology of PET targeting in brain metabolism and the development of tracers provide new tools to track and evaluate the brain's pathological changes after ischemic brain injury. Despite no existing evidence for an available PET-based prediction method, discoveries of new tracers are expected to provide more possibilities for the whole field.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion. Brain Sci 2019; 9:brainsci9100287. [PMID: 31652564 PMCID: PMC6827002 DOI: 10.3390/brainsci9100287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 01/21/2023] Open
Abstract
Although early reperfusion after stroke salvages the still-viable ischemic tissue, peri-infarct selective neuronal loss (SNL) can cause sensorimotor deficits (SMD). We designed a longitudinal protocol to assess the effects of cytoprotectants on SMD, microglial activation (MA) and SNL, and specifically tested whether the KCa3.1-blocker TRAM-34 would prevent SNL. Spontaneously hypertensive rats underwent 15 min middle-cerebral artery occlusion and were randomized into control or treatment group, which received TRAM-34 intraperitoneally for 4 weeks starting 12 h after reperfusion. SMD was assessed longitudinally using the sticky-label test. MA was quantified at day 14 using in vivo [11C]-PK111195 positron emission tomography (PET), and again across the same regions-of-interest template by immunofluorescence together with SNL at day 28. SMD recovered significantly faster in the treated group (p = 0.004). On PET, MA was present in 5/6 rats in each group, with no significant between-group difference. On immunofluorescence, both SNL and MA were present in 5/6 control rats and 4/6 TRAM-34 rats, with a non-significantly lower degree of MA but a significantly (p = 0.009) lower degree of SNL in the treated group. These findings document the utility of our longitudinal protocol and suggest that TRAM-34 reduces SNL and hastens behavioural recovery without marked MA blocking at the assessed time-points.
Collapse
|
9
|
Effects of hyperoxia on 18F-fluoro-misonidazole brain uptake and tissue oxygen tension following middle cerebral artery occlusion in rodents: Pilot studies. PLoS One 2017; 12:e0187087. [PMID: 29091934 PMCID: PMC5665507 DOI: 10.1371/journal.pone.0187087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Mapping brain hypoxia is a major goal for stroke diagnosis, pathophysiology and treatment monitoring. 18F-fluoro-misonidazole (FMISO) positron emission tomography (PET) is the gold standard hypoxia imaging method. Normobaric hyperoxia (NBO) is a promising therapy in acute stroke. In this pilot study, we tested the straightforward hypothesis that NBO would markedly reduce FMISO uptake in ischemic brain in Wistar and spontaneously hypertensive rats (SHRs), two rat strains with distinct vulnerability to brain ischemia, mimicking clinical heterogeneity. METHODS Thirteen adult male rats were randomized to distal middle cerebral artery occlusion under either 30% O2 or 100% O2. FMISO was administered intravenously and PET data acquired dynamically for 3hrs, after which magnetic resonance imaging (MRI) and tetrazolium chloride (TTC) staining were carried out to map the ischemic lesion. Both FMISO tissue uptake at 2-3hrs and FMISO kinetic rate constants, determined based on previously published kinetic modelling, were obtained for the hypoxic area. In a separate group (n = 9), tissue oxygen partial pressure (PtO2) was measured in the ischemic tissue during both control and NBO conditions. RESULTS As expected, the FMISO PET, MRI and TTC lesion volumes were much larger in SHRs than Wistar rats in both the control and NBO conditions. NBO did not appear to substantially reduce FMISO lesion size, nor affect the FMISO kinetic rate constants in either strain. Likewise, MRI and TTC lesion volumes were unaffected. The parallel study showed the expected increases in ischemic cortex PtO2 under NBO, although these were small in some SHRs with very low baseline PtO2. CONCLUSIONS Despite small samples, the apparent lack of marked effects of NBO on FMISO uptake suggests that in permanent ischemia the cellular mechanisms underlying FMISO trapping in hypoxic cells may be disjointed from PtO2. Better understanding of FMISO trapping processes will be important for future applications of FMISO imaging.
Collapse
|
10
|
Li H, Lv B, Kong L, Xia J, Zhu M, Hu L, Zhen D, Wu Y, Jia X, Zhu S, Cui H. Nova1 mediates resistance of rat pheochromocytoma cells to hypoxia-induced apoptosis via the Bax/Bcl-2/caspase-3 pathway. Int J Mol Med 2017; 40:1125-1133. [PMID: 28791345 PMCID: PMC5593465 DOI: 10.3892/ijmm.2017.3089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Neuro-oncological ventral antigen 1 (Nova1) is a well known brain-specific splicing factor. Several studies have identified Nova1 as a regulatory protein at the top of a hierarchical network. However, the function of Nova1 during hypoxia remains poorly understood. This study aimed to investigate the protective effect of Nova1 against cell hypoxia and to further explore the Bax/Bcl-2/caspase-3 pathway as a potential mechanism. During hypoxia, the survival rate of pheochromocytoma PC12 cells was gradually decreased and the apoptosis rate was gradually increased, peaking at 48 h of hypoxia. At 48 h after transfection of PC12 cells with pCMV-Myc-Nova1, the expression of Nova1 was significantly increased, with wide distribution in the cytoplasm and nucleus. Moreover, the survival rate was significantly increased and the apoptosis rate was significantly decreased. Additionally, the mRNA and protein expression levels of Bax and caspase-3 were significantly increased in the pCMV-Myc group and significantly decreased in the pCMV-Myc-Nova1 group, whereas that of Bcl-2 was significantly decreased in the pCMV-Myc group and significantly increased in the pCMV-Myc-Nova1 group. This study indicated that Nova1 could be linked to resistance to the hypoxia-induced apoptosis of PC12 cells via the Bax/Bcl-2/caspase-3 pathway, and this finding may be of significance for exploring novel mechanisms of hypoxia and the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Hualing Li
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Bei Lv
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ling Kong
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ming Zhu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Lijuan Hu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Danyang Zhen
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yifan Wu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoqin Jia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Sujuan Zhu
- Department of Biochemistry, Biosciences and Biotechnology College of Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hengmi Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
11
|
Castaneda Vega S, Weinl C, Calaminus C, Wang L, Harant M, Ehrlichmann W, Thiele D, Kohlhofer U, Reischl G, Hempel JM, Ernemann U, Quintanilla Martinez L, Nordheim A, Pichler BJ. Characterization of a novel murine model for spontaneous hemorrhagic stroke using in vivo PET and MR multiparametric imaging. Neuroimage 2017; 155:245-256. [DOI: 10.1016/j.neuroimage.2017.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 01/07/2023] Open
|
12
|
Ejaz S, Emmrich JV, Sitnikov SL, Hong YT, Sawiak SJ, Fryer TD, Aigbirhio FI, Williamson DJ, Baron JC. Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia. Brain 2016; 139:751-64. [PMID: 26767570 DOI: 10.1093/brain/awv391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 01/02/2023] Open
Abstract
'True' transient ischaemic attacks are characterized not only clinically, but also radiologically by a lack of corresponding changes on magnetic resonance imaging. During a transient ischaemic attack it is assumed that the affected tissue is penumbral but rescued by early spontaneous reperfusion. There is, however, evidence from rodent studies that even brief focal ischaemia not resulting in tissue infarction can cause extensive selective neuronal loss associated with long-lasting sensorimotor impairment but normal magnetic resonance imaging. Selective neuronal loss might therefore contribute to the increasingly recognized cognitive impairment occurring in patients with transient ischaemic attacks. It is therefore relevant to consider treatments to reduce brain damage occurring with transient ischaemic attacks. As penumbral neurons are threatened by markedly constrained oxygen delivery, improving the latter by increasing arterial O2 content would seem logical. Despite only small increases in arterial O2 content, normobaric oxygen therapy experimentally induces significant increases in penumbral O2 pressure and by such may maintain the penumbra alive until reperfusion. Nevertheless, the effects of normobaric oxygen therapy on infarct volume in rodent models have been conflicting, although duration of occlusion appeared an important factor. Likewise, in the single randomized trial published to date, early-administered normobaric oxygen therapy had no significant effect on clinical outcome despite reduced diffusion-weighted imaging lesion growth during therapy. Here we tested the hypothesis that normobaric oxygen therapy prevents both selective neuronal loss and sensorimotor deficits in a rodent model mimicking true transient ischaemic attack. Normobaric oxygen therapy was applied from the onset and until completion of 15 min distal middle cerebral artery occlusion in spontaneously hypertensive rats, a strain representative of the transient ischaemic attack-prone population. Whereas normoxic controls showed normal magnetic resonance imaging but extensive cortical selective neuronal loss associated with microglial activation (present both at Day 14 in vivo and at Day 28 post-mortem) and marked and long-lasting sensorimotor deficits, normobaric oxygen therapy completely prevented sensorimotor deficit (P < 0.02) and near-completely Day 28 selective neuronal loss (P < 0.005). Microglial activation was substantially reduced at Day 14 and completely prevented at Day 28 (P = 0.002). Our findings document that normobaric oxygen therapy administered during ischaemia nearly completely prevents the neuronal death, microglial inflammation and sensorimotor impairment that characterize this rodent true transient ischaemic attack model. Taken together with the available literature, normobaric oxygen therapy appears a promising therapy for short-lasting ischaemia, and is attractive clinically as it could be started at home in at-risk patients or in the ambulance in subjects suspected of transient ischaemic attack/early stroke. It may also be a straightforward adjunct to reperfusion therapies, and help prevent subtle brain damage potentially contributing to long-term cognitive and sensorimotor impairment in at-risk populations.
Collapse
Affiliation(s)
- Sohail Ejaz
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Julius V Emmrich
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK 2 Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Sergey L Sitnikov
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Young T Hong
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Stephen J Sawiak
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Tim D Fryer
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Franklin I Aigbirhio
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - David J Williamson
- 3 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Jean-Claude Baron
- 1 Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, UK 4 INSERM U894, Hôpital Sainte-Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Lapi SE, Lewis JS, Dehdashti F. Evaluation of hypoxia with copper-labeled diacetyl-bis(N-methylthiosemicarbazone). Semin Nucl Med 2015; 45:177-85. [PMID: 25704389 DOI: 10.1053/j.semnuclmed.2014.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Imaging of hypoxia is important in many diseases states in oncology, cardiology, and neurology. The radiopharmaceutical, copper-labeled diacetyl-bis(N-methylthiosemicarbazone), has been used to assess hypoxia in many studies. In particular, copper-labeled diacetyl-bis(N-methylthiosemicarbazone) has been used in oncologic settings to investigate tumor hypoxia and the role of this parameter in response to therapy and outcome. Some groups have conducted imaging studies assessing the role of hypoxia in cardiovascular and neurologic disorders. Additionally, several groups have made significant progress into understanding the mechanism by which this compound accumulates in cells. Multiple preclinical and clinical studies have been conducted, shedding light on the importance of careful image analysis when using this tracer. This review article focuses on the recent preclinical and clinical studies with this tracer.
Collapse
Affiliation(s)
- Suzanne E Lapi
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO; The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Farrokh Dehdashti
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO; The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
14
|
Nieto E, Delgado M, Sobrado M, de Ceballos ML, Alajarín R, García-García L, Kelly J, Lizasoain I, Pozo MA, Álvarez-Builla J. Preliminary research on 1-(4-bromo-2-nitroimidazol-1-yl)-3-[ 18 F]fluoropropan-2-ol as a novel brain hypoxia PET tracer in a rodent model of stroke. Eur J Med Chem 2015. [DOI: 10.1016/j.ejmech.2015.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today 2014; 20:306-17. [PMID: 25448762 DOI: 10.1016/j.drudis.2014.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022]
Abstract
Glioma is the most aggressive brain tumour, resulting in death often within 1-2 years. Current treatment strategies involve surgical resection followed by chemoradiation therapy. Despite continuing improvements in the delivery of adjuvant therapies, there has not been a dramatic increase in survival for glioma. Molecular imaging techniques have become central in the development of new therapeutic strategies in recent years. The multimodal imaging technology of positron emission tomography/magnetic resonance imaging (PET/MRI) has recently been realised on a preclinical scale and the effect of this technology is starting to be observed in preclinical drug development for glioma. Here, we propose that PET/MRI will play an integral part in the development of new diagnostic and therapeutic strategies for glioma.
Collapse
|
16
|
Ejaz S, Anwar K, Ashraf M. MRI and neuropathological validations of the involvement of air pollutants in cortical selective neuronal loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3351-3362. [PMID: 24234816 DOI: 10.1007/s11356-013-2294-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/24/2013] [Indexed: 05/28/2023]
Abstract
Vehicles are a major source of air pollution, especially particulate matter (PM) pollution, throughout the world and auto-rickshaws are considered main contributors to this air pollution. PM, in addition to causing respiratory and cardiovascular disorders, has potential to gain access to the brain and could induce neuroinflammation leading to different neurological disorders. Therefore, in the current project, MRI and immunohistochemistry techniques were adopted to ascertain the neurotoxic potential of the chronic exposure to different PM generated by two-stroke auto-rickshaws (TSA), four-stroke auto-rickshaws (FSA), and aluminum sulfate (AS) solution in rats. The results highlighted that all treated groups followed a pattern of dose-dependent increase in pure cortical neuronal loss, selective neuronal loss (SNL), nuclear pyknosis, karyolysis, and karyorrhexis. Mild to moderate areas of penumbra were also observed with increase in the population of activated microglia and astrocytes, while no alteration in the intensities of T2W MRI signals was perceived in any group. When comparing the findings, TSA possess more neurotoxic potential than FSA and AS, which could be associated with increased concentration of certain elements in TSA emissions. The study concludes that chronic exposure to PM from TSA, FSA, and AS solutions produces diverse neuropathies in the brain, which may lead to different life-threatening neurological disorders like stroke, Alzheimer's, and Parkinson's disorders. Government and environmental agencies should take serious notice of this alarming situation, and immediate steps should be implemented to improve the standards of PM emissions from auto-rickshaws.
Collapse
|