1
|
Zlatopolskiy BD, Endepols H, Krasikova RN, Fedorova OS, Ermert J, Neumaier B. 11C- and 18F-labelled tryptophans as PET-tracers for imaging of altered tryptophan metabolism in age-associated disorders. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ageing of the world’s population is the result of increased life expectancy observed in almost all countries throughout the world. Consequently, a rising tide of ageing-associated disorders, like cancer and neurodegenerative diseases, represents one of the main global challenges of the 21st century. The ability of mankind to overcome these challenges is directly dependent on the capability to develop novel methods for therapy and diagnosis of age-associated diseases. One hallmark of age-related pathologies is an altered tryptophan metabolism. Numerous pathological processes including neurodegenerative and neurological diseases like epilepsy, Parkinson’s and Alzheimer’s diseases, cancer and diabetes exhibit marked changes in tryptophan metabolism. Visualization of key processes of tryptophan metabolic pathways, especially using positron emission tomography (PET) and related hybrid methods like PET/CT and PET/MRI, can be exploited to early detect the aforementioned disorders with considerable accuracy, allowing appropriate and timely treatment of patients. Here we review the published 11C- and 18F-labelled tryptophans with respect to the production and also preclinical and clinical evaluation as PET-tracers for visualization of different branches of tryptophan metabolism.
The bibliography includes 159 references.
Collapse
|
2
|
Chiotellis A, Müller Herde A, Rössler SL, Brekalo A, Gedeonova E, Mu L, Keller C, Schibli R, Krämer SD, Ametamey SM. Synthesis, Radiolabeling, and Biological Evaluation of 5-Hydroxy-2-[18F]fluoroalkyl-tryptophan Analogues as Potential PET Radiotracers for Tumor Imaging. J Med Chem 2016; 59:5324-40. [DOI: 10.1021/acs.jmedchem.6b00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Aristeidis Chiotellis
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Adrienne Müller Herde
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon L. Rössler
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Ante Brekalo
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Erika Gedeonova
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Linjing Mu
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Department of Nuclear
Medicine, University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Keller
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Roger Schibli
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Stefanie D. Krämer
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon M. Ametamey
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| |
Collapse
|
3
|
Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications. BIOMED RESEARCH INTERNATIONAL 2015; 2015:269641. [PMID: 26146615 PMCID: PMC4471256 DOI: 10.1155/2015/269641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Pancreatic adenocarcinoma is one of the deadliest human malignancies. Early detection is difficult and effective treatment is limited. Verifying the presence of micrometastatic dissemination and vessel invasion remains elusive, limiting radiological staging once this diagnosis is made. Diagnostic imaging provides independent tools to evaluate and characterize the biologic behavior of pancreatic cancer. Conventional anatomic imaging alone with either CT or MRI yields useful information on organ involvement but is limited in providing molecular and physiological information. Molecular imaging techniques such as PET or MRS provide information on metabolic and signaling pathways. Advanced MR sequences that target physiological parameters expand imaging options to characterize these tumors. By considering the parametric data from these three imaging approaches (anatomic, molecular, and physiological) we can better define specific tumor signatures. Such parametric characterization can provide insight into tumor metabolism, cellular density, protein expression, focal perfusion, and vascular permeability of these tumors. Radiogenomics research has already demonstrated ability to obtain information about cancer's genotype and phenotype; this is without invasive procedures or surgery. Further advances in these areas of experimental imaging hold promise to enable future clinical advances in detection and therapy of pancreatic cancer.
Collapse
|
4
|
Eriksson J, Åberg O, Selvaraju RK, Antoni G, Johansson L, Eriksson O. Strategy to develop a MAO-A-resistant 5-hydroxy-L-[β-(11)C]tryptophan isotopologue based on deuterium kinetic isotope effects. EJNMMI Res 2014; 4:62. [PMID: 26116123 PMCID: PMC4452635 DOI: 10.1186/s13550-014-0062-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background The serotonin precursor 5-hydroxy-l-[β-11C]tryptophan ([11C]HTP) is in clinical use for localization of neuroendocrine tumors and has been suggested as a proxy marker for pancreatic islet cells. However, degradation by monoamine oxidase-A (MAO-A) reduces retention and the contrast to non-endocrine tissue. Methods A synthesis method was developed for 5-hydroxy-l-[β-11C2H]tryptophan ([11C]DHTP), an isotopologue of [11C]HTP, labeled with 11C and 2H at the β-position adjacent to the carbon involved in MAO-A decarboxylation. MAO-A-mediated degradation of [11C]DHTP was evaluated and compared to non-deuterated [11C]HTP. Results [11C]DHTP was synthesized with a radiochemical purity of >98%, radioactivity of 620 ± 190 MBq, and deuterium (2H or 2H2) incorporation at the β-position of 22% ±5%. Retention and resistance to MAO-A-mediated degradation of [11C]DHTP were increased in cells but not in non-human primate pancreas. Conclusions Partial deuteration of the β-position yields improved resistance to MAO-A-mediated degradation in vitro but not in vivo.
Collapse
Affiliation(s)
- Jonas Eriksson
- Preclinical PET Platform (PPP), Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden,
| | | | | | | | | | | |
Collapse
|
5
|
Eriksson O, Espes D, Selvaraju RK, Jansson E, Antoni G, Sörensen J, Lubberink M, Biglarnia AR, Eriksson JW, Sundin A, Ahlström H, Eriksson B, Johansson L, Carlsson PO, Korsgren O. Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes 2014; 63:3428-37. [PMID: 24848067 DOI: 10.2337/db13-1877] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, a well-developed serotonin system is localized to the pancreatic islets while being absent in exocrine pancreas. Assessment of pancreatic serotonin biosynthesis could therefore be used to estimate the human endocrine pancreas. Proof of concept was tested in a prospective clinical trial by comparisons of type 1 diabetic (T1D) patients, with extensive reduction of β-cells, with healthy volunteers (HVs). C-peptide-negative (i.e., insulin-deficient) T1D subjects (n = 10) and HVs (n = 9) underwent dynamic positron emission tomography with the radiolabeled serotonin precursor [(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP). A significant accumulation of [(11)C]5-HTP was obtained in the pancreas of the HVs, with large interindividual variation. A substantial and highly significant reduction (66%) in the pancreatic uptake of [(11)C]5-HTP in T1D subjects was observed, and this was most evident in the corpus and caudal regions of the pancreas where β-cells normally are the major constituent of the islets. [(11)C]5-HTP retention in the pancreas was reduced in T1D compared with nondiabetic subjects. Accumulation of [(11)C]5-HTP in the pancreas of both HVs and subjects with T1D was in agreement with previously reported morphological observations on the β-cell volume, implying that [(11)C]5-HTP retention is a useful noninvasive surrogate marker for the human endocrine pancreas.
Collapse
Affiliation(s)
- Olof Eriksson
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ram K Selvaraju
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | - Emma Jansson
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- AstraZeneca R&D, Mölndal, Sweden Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Radiology, Oncology, and Radiation Sciences, Uppsala University, Uppsala, Sweden AstraZeneca R&D, Mölndal, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Eriksson O, Selvaraju RK, Johansson L, Eriksson JW, Sundin A, Antoni G, Sörensen J, Eriksson B, Korsgren O. Quantitative imaging of serotonergic biosynthesis and degradation in the endocrine pancreas. J Nucl Med 2014; 55:460-5. [PMID: 24525204 DOI: 10.2967/jnumed.113.125187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Serotonergic biosynthesis in the endocrine pancreas, of which the islets of Langerhans is the major constituent, has been implicated in insulin release and β cell proliferation. In this study, we investigated the feasibility of quantitative noninvasive imaging of the serotonergic metabolism in the pancreas using the PET tracer (11)C-5-hydroxy-l-tryptophan ((11)C-5-HTP). METHODS Uptake of (11)C-5-HTP, and its specificity for key enzymes in the serotonergic metabolic pathway, was assessed in vitro (INS-1 and PANC1 cells and human islet and exocrine preparations) and in vivo (nonhuman primates and healthy and diabetic rats). RESULTS In vitro tracer uptake in endocrine cells (INS-1 and human islets), but not PANC1 and exocrine cells, was mediated specifically by intracellular conversion into serotonin. Pancreatic uptake of (11)C-5-HTP in nonhuman primates was markedly decreased by inhibition of the enzyme dopa decarboxylase, which converts (11)C-5-HTP to (11)C-serotonin and increased after inhibition of monoamine oxidase-A, the main enzyme responsible for serotonin degradation. Uptake in the rat pancreas was similarly modulated by inhibition of monoamine oxidase-A and was reduced in animals with induced diabetes. CONCLUSION The PET tracer (11)C-5-HTP can be used for quantitative imaging of the serotonergic system in the endocrine pancreas.
Collapse
Affiliation(s)
- Olof Eriksson
- Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|