1
|
Suryanarayana MV. Laser isotope enrichment of 168Er. Sci Rep 2025; 15:10543. [PMID: 40148358 PMCID: PMC11950215 DOI: 10.1038/s41598-024-80936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/22/2024] [Indexed: 03/29/2025] Open
Abstract
This present study investigates a three-step laser isotope separation method for the enrichment of 168Er isotope using 631.052 nm - 586.912 nm - 566.003 nm three-step photoionization scheme. The lineshape contours observed in three-step photoionization process have been investigated in detail. This study shows that enrichment of 168Er isotope can be achieved with a relatively simple experimental configuration. With the derived system configuration, it has been shown that it is possible to produce 18 g/day of 90% enriched 168Er. Using the enriched 168Er isotope obtained from the laser isotope separation process, irradiation in low, medium, and high flux reactors can produce 180, 1800, and 18,000 doses per day (each with an activity of 7.4 GBq) respectively. After 24 h of irradiation and chemical separation, the radioisotopic purity of the medical isotope reaches to > 99% making it suitable for the medical applications. This is the first ever study on the laser isotope separation of 168Er isotope.
Collapse
Affiliation(s)
- M V Suryanarayana
- Bhabha Atomic Research Centre, Visakhapatnam, Andhra Pradesh, India.
| |
Collapse
|
2
|
Patra S, Chakraborty S, Chakravarty R. Emerging role of electrochemistry in radiochemical separation of medically important radiometals: state of the art. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:282-294. [PMID: 39583906 PMCID: PMC11578814 DOI: 10.62347/xitw6701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Electrochemical separation technology has brought a renaissance in the field of nuclear medicine towards obtaining clinical-grade radiometals for preparation of a wide variety of radiopharmaceuticals. This article is a comprehensive summary of the electrochemical processes developed for the separation of radiometals that could be used for diagnostic or therapeutic applications in nuclear medicine. For using electrochemistry as a tool for the separation of radiometals, intricate knowledge is essential to understand the basic parameters of electrochemical separation processes which include applied potential, selection of electrolyte, choice of the electrode, the temperature of the electrolyte, pH of the electrolyte and time of electrolysis. The advantages of the electrochemical separation approach over the other conventional methodologies such as solvent extraction, column chromatography, sublimation, etc., have also been discussed. The latest research and development from our laboratory on electrochemical methodologies developed for separation of 90Y from 90Sr, 188Re from 188W, 99mTc from 99Mo, 47Sc from 46Ca, 45Ca from 46Sc,153Sm from 154Eu, 169Er from 169Yb, 177Lu from Yb and 132/135La from Ba have been described. In all the cases, the final product is obtained either in a 'no-carrier-added' (NCA) form or free from inextricable impurities and thus found suitable for formulation of radiopharmaceuticals.
Collapse
Affiliation(s)
- Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research CentreTrombay, Mumbai 400085, India
- Homi Bhabha National InstituteAnushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research CentreTrombay, Mumbai 400085, India
- Homi Bhabha National InstituteAnushaktinagar, Mumbai 400094, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research CentreTrombay, Mumbai 400085, India
- Homi Bhabha National InstituteAnushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Electrochemical Separation and Purification of No-Carrier-Added 177Lu for Radiopharmaceutical Preparation: Translation from Bench to Bed. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
4
|
CHAKRABORTY S, BASU S. Current radioisotopes and radiopharmaceuticals for radiosynoviorthesis: basic and applied characteristics, production and availability. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 66:304-310. [DOI: 10.23736/s1824-4785.22.03493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Sadler AWE, Hogan L, Fraser B, Rendina LM. Cutting edge rare earth radiometals: prospects for cancer theranostics. EJNMMI Radiopharm Chem 2022; 7:21. [PMID: 36018527 PMCID: PMC9418400 DOI: 10.1186/s41181-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background With recent advances in novel approaches to cancer therapy and imaging, the application of theranostic techniques in personalised medicine has emerged as a very promising avenue of research inquiry in recent years. Interest has been directed towards the theranostic potential of Rare Earth radiometals due to their closely related chemical properties which allow for their facile and interchangeable incorporation into identical bifunctional chelators or targeting biomolecules for use in a diverse range of cancer imaging and therapeutic applications without additional modification, i.e. a “one-size-fits-all” approach. This review will focus on recent progress and innovations in the area of Rare Earth radionuclides for theranostic applications by providing a detailed snapshot of their current state of production by means of nuclear reactions, subsequent promising theranostic capabilities in the clinic, as well as a discussion of factors that have impacted upon their progress through the theranostic drug development pipeline. Main body In light of this interest, a great deal of research has also been focussed towards certain under-utilised Rare Earth radionuclides with diverse and favourable decay characteristics which span the broad spectrum of most cancer imaging and therapeutic applications, with potential nuclides suitable for α-therapy (149Tb), β−-therapy (47Sc, 161Tb, 166Ho, 153Sm, 169Er, 149Pm, 143Pr, 170Tm), Auger electron (AE) therapy (161Tb, 135La, 165Er), positron emission tomography (43Sc, 44Sc, 149Tb, 152Tb, 132La, 133La), and single photon emission computed tomography (47Sc, 155Tb, 152Tb, 161Tb, 166Ho, 153Sm, 149Pm, 170Tm). For a number of the aforementioned radionuclides, their progression from ‘bench to bedside’ has been hamstrung by lack of availability due to production and purification methods requiring further optimisation. Conclusions In order to exploit the potential of these radionuclides, reliable and economical production and purification methods that provide the desired radionuclides in high yield and purity are required. With more reactors around the world being decommissioned in future, solutions to radionuclide production issues will likely be found in a greater focus on linear accelerator and cyclotron infrastructure and production methods, as well as mass separation methods. Recent progress towards the optimisation of these and other radionuclide production and purification methods has increased the feasibility of utilising Rare Earth radiometals in both preclinical and clinical settings, thereby placing them at the forefront of radiometals research for cancer theranostics.
Collapse
Affiliation(s)
| | - Leena Hogan
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Benjamin Fraser
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Freudenberg R, Hesse L, Kotzerke J. [Evaluation of radionuclide impurities in several radiopharmaceuticals]. Nuklearmedizin 2022; 61:339-346. [PMID: 35426097 DOI: 10.1055/a-1759-1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Revisions to German radiation protection laws have resulted in updated limit values, which could affect the unrestricted release of waste produced by nuclear medicine therapy. In addition, signs of long-lived concomitant nuclides in 153Sm and 223Ra radiopharmaceuticals have been seen in the past. Therefore, the goal of this article was to analyze the radionuclidic purity of selected radiopharmaceuticals. METHOD 48 samples from 12 different radiopharmaceuticals were examined. A high purity germanium semiconductor detector (HPGe detector) was used for the qualitative and quantitative evaluation of concomitant nuclides. RESULTS Various europium isotopes were identified in 90Y-citrate, 153Sm-Quadramet, 166Ho-QuiremSpheres, and 169Er-erbium citrate, with the greatest amount being found in 153Sm (7.0 ppm (152Eu), 8.4 ppm (154Eu), and 2.1 ppm (155Eu)). 169Yb was the most significant impurity in 169Er (513 ppm). In the case of 177Lu radiopharmaceuticals, there was a significant difference in the 177mLu content (0.8 ppm vs. 0.0024 ppm) between two different manufacturers. No concomitant nuclides could be found within the detection limits in the case of 90Y spheres, 223Ra, and 225Ac. CONCLUSION The limit values for unrestricted release are exceeded manyfold in the case of the identified concomitant nuclides. As a result, alternative release procedures (extension of the decay time, specific release, release in the individual case) or transfer to collection facilities must be considered. Technical methods for reducing or preventing impurities could also be a possible solution. Consequences for patient radiation exposure were able to be ruled out.
Collapse
Affiliation(s)
- Robert Freudenberg
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany
| | - Lorenz Hesse
- OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Dresden University of Technology, Dresden, Germany
| | - Jörg Kotzerke
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus an der TU Dresden, Dresden, Germany.,Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Talip Z, Borgna F, Müller C, Ulrich J, Duchemin C, Ramos JP, Stora T, Köster U, Nedjadi Y, Gadelshin V, Fedosseev VN, Juget F, Bailat C, Fankhauser A, Wilkins SG, Lambert L, Marsh B, Fedorov D, Chevallay E, Fernier P, Schibli R, van der Meulen NP. Production of Mass-Separated Erbium-169 Towards the First Preclinical in vitro Investigations. Front Med (Lausanne) 2021; 8:643175. [PMID: 33968955 PMCID: PMC8100037 DOI: 10.3389/fmed.2021.643175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
The β--particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclidically pure 169Er. The quality of the 169Er product permitted radiolabeling and pre-clinical studies. A preliminary in vitro experiment was accomplished, using a 169Er-PSMA-617, to show the potential of 169Er to reduce tumor cell viability.
Collapse
Affiliation(s)
- Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jiri Ulrich
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Charlotte Duchemin
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, Catholic University of Leuven, Leuven, Belgium
| | - Joao P. Ramos
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute for Nuclear and Radiation Physics, Catholic University of Leuven, Leuven, Belgium
| | - Thierry Stora
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | | | - Youcef Nedjadi
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vadim Gadelshin
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia
| | | | - Frederic Juget
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adelheid Fankhauser
- Analytic Radioactive Materials, Paul Scherrer Institute, Villigen, Switzerland
| | - Shane G. Wilkins
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Laura Lambert
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Bruce Marsh
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Dmitry Fedorov
- Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
| | - Eric Chevallay
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Pascal Fernier
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
8
|
Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Vimalnath KV, Rajeswari A, Sarma HD, Dash A, Chakraborty S. Ce-141-labeled DOTMP: A theranostic option in management of pain due to skeletal metastases. J Labelled Comp Radiopharm 2019; 62:178-189. [PMID: 30663098 DOI: 10.1002/jlcr.3710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/11/2022]
Abstract
Owing to its favorable radioactive decay characteristics (T1/2 = 32.51 d, Eβ [max] = 434.6 keV [70.5%] and 580.0 keV [29.5%], Eγ = 145.4 keV [48.5%]), 141 Ce could be envisaged as a theranostic radionuclide for use in nuclear medicine. The present article reports synthesis and evaluation of 141 Ce complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid (DOTMP) as a potent theranostic agent targeting metastatic skeletal lesions. Ce-141 was produced with 314 ± 29 MBq/mg (n = 6) specific activity and >99.9% radionuclidic purity (n = 6). Around 185 MBq dose of [141 Ce]Ce-DOTMP was synthesized with 98.6 ± 0.5% (n = 4) radiochemical yield under optimized conditions of reaction, and the preparation showed adequately high in vitro stability. Biodistribution studies in normal Wistar rats demonstrated significant skeletal localization and retention of injected activity (2.73 ± 0.28% and 2.63 ± 0.22% of injected activity per gram in femur at 3 hours and 14 days post-injection, respectively) with rapid clearance from non-target organs. The results of biodistribution studies were corroborated by serial scintigraphic imaging studies. These results demonstrate the potential utility of 141 Ce-DOTMP as a theranostic molecule for personalized patient care of cancer patients suffering from painful metastatic skeletal lesions.
Collapse
Affiliation(s)
- K V Vimalnath
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ardhi Rajeswari
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Chakravarty R, Chakraborty S, Ram R, Nair KVV, Rajeswari A, Sarma HD, Dash A. Palliative care of bone pain due to skeletal metastases: Exploring newer avenues using neutron activated (45)Ca. Nucl Med Biol 2016; 43:140-9. [PMID: 26872438 DOI: 10.1016/j.nucmedbio.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Abstract
INTRODUCTION With an objective to develop a cost-effective radiochemical formulation for palliation of pain due to skeletal metastases, we have demonstrated a viable method for large-scale production of (45)Ca (t½=163 days, Eβmax=0.3MeV) using moderate flux research reactor, its purification from radionuclidic impurities adopting electrochemical approach and preclinical evaluation of (45)CaCl2. METHODS Irradiation parameters were optimized by theoretical calculations for production of (45)Ca with highest possible specific activity along with minimum radionuclidic impurity burden. Based on this, the radioisotope was produced in reactor by irradiation of isotopically enriched (98% in (44)Ca) CaO target at a thermal neutron flux of ~1 × 10(14) n.cm(-2).s(-1) for 4 months. Scandium-46 impurity co-produced along with (45)Ca was efficiently removed adopting an electrochemical separation approach. The bone specificity of (45)CaCl2 was established by in vitro studies involving its uptake in hydroxyapatite (HA) particles and also evaluating its biodistribution pattern over a period of 2 weeks after in vivo administration in Wistar rats. RESULTS Thermal neutron irradiation of 100mg of enriched (98% in (44)Ca) CaO target followed by radiochemical processing and electrochemical purification procedure yielded ~37 GBq of (45)Ca with a specific activity of ~370 MBq/mg and radionuclidic purity>99.99%. The reliability and reproducibility of this approach were amply demonstrated by process demonstration in several batches. In vitro studies indicated significant uptake of (45)CaCl2 (up to 65%) in HA particles. In vivo biodistribution studies in Wistar rats showed specific skeletal accumulation (40-46%ID) with good retention over a period of 2 weeks. CONCLUSIONS To the best of our knowledge, this is the first study on utilization of (45)CaCl2 in the context of nuclear medicine. The results obtained in this study hold promise and warrant further investigations for future translation of (45)CaCl2 to the clinics, thereby potentially enabling a cost-effective approach for metastatic bone pain palliation especially in developing countries.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
| | - Sudipta Chakraborty
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Ramu Ram
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | | | - Ardhi Rajeswari
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Ashutosh Dash
- Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
| |
Collapse
|
11
|
Dash A, Knapp Jr FF(R. An overview of radioisotope separation technologies for development of 188W/188Re radionuclide generators providing 188Re to meet future research and clinical demands. RSC Adv 2015. [DOI: 10.1039/c5ra03890a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Separation technologies for 188W/188Re radionuclide generators.
Collapse
Affiliation(s)
- Ashutosh Dash
- Isotope Production and Applications Division
- Bhabha Atomic Research Centre (BARC)
- Mumbai 400 085
- India
| | - F. F. (Russ) Knapp Jr
- Emeritus
- Medical Isotopes Program
- Isotope Development Group
- Oak Ridge National Laboratory (ORNL)
- Oak Ridge
| |
Collapse
|