1
|
Parent EE, Fowler AM. Nuclear Receptor Imaging In Vivo-Clinical and Research Advances. J Endocr Soc 2022; 7:bvac197. [PMID: 36655003 PMCID: PMC9838808 DOI: 10.1210/jendso/bvac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptors are transcription factors that function in normal physiology and play important roles in diseases such as cancer, inflammation, and diabetes. Noninvasive imaging of nuclear receptors can be achieved using radiolabeled ligands and positron emission tomography (PET). This quantitative imaging approach can be viewed as an in vivo equivalent of the classic radioligand binding assay. A main clinical application of nuclear receptor imaging in oncology is to identify metastatic sites expressing nuclear receptors that are targets for approved drug therapies and are capable of binding ligands to improve treatment decision-making. Research applications of nuclear receptor imaging include novel synthetic ligand and drug development by quantifying target drug engagement with the receptor for optimal therapeutic drug dosing and for fundamental research into nuclear receptor function in cells and animal models. This mini-review provides an overview of PET imaging of nuclear receptors with a focus on radioligands for estrogen receptor, progesterone receptor, and androgen receptor and their use in breast and prostate cancer.
Collapse
Affiliation(s)
- Ephraim E Parent
- Mayo Clinic Florida, Department of Radiology, Jacksonville, Florida 32224, USA
| | - Amy M Fowler
- Correspondence: Amy M. Fowler, MD, PhD, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252, USA.
| |
Collapse
|
2
|
Automated GMP Production and Preclinical Evaluation of [ 68Ga]Ga-TEoS-DAZA and [ 68Ga]Ga-TMoS-DAZA. Pharmaceutics 2022; 14:pharmaceutics14122695. [PMID: 36559188 PMCID: PMC9783202 DOI: 10.3390/pharmaceutics14122695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
[68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA are two novel radiotracers suitable for functional PET liver imaging. Due to their specific liver uptake and biliary excretion, the tracers may be applied for segmental liver function quantification, gall tree imaging and the differential diagnosis of liver nodules. The purpose of this study was to investigate problems that occurred initially during the development of the GMP compliant synthesis procedure and to evaluate the tracers in a preclinical model. After low radiolabeling yields were attributed to precursor instability at high temperatures, an optimized radiolabeling procedure was established. Quality controls were in accordance with Ph. Eur. requirements and gave compliant results, although the method for the determination of the 68Ga colloid is partially inhibited due to the presence of a radioactive by-product. The determination of logP revealed [68Ga]Ga-TEoS-DAZA (ethoxy bearing) to be more lipophilic than [68Ga]Ga-TMoS-DAZA (methoxy bearing). Accordingly, biodistribution studies in an in ovo model showed a higher liver uptake for [68Ga]Ga-TEoS-DAZA. In dynamic in ovo PET imaging, rapid tracer accumulation in the liver was observed. Similarly, the activity in the intestines rose steadily within the first hour p.i., indicating biliary excretion. As [68Ga]Ga-TEoS-DAZA and [68Ga]Ga-TMoS-DAZA can be prepared according to GMP guidelines, transition into the early clinical phase is now possible.
Collapse
|
3
|
Frisch K, Mortensen FV, Munk OL, Gormsen LC, Alstrup AKO. N-(4-[ 18F]fluorobenzyl)cholylglycine, a potential tracer for positron emission tomography of enterohepatic circulation and drug-induced inhibition of ileal bile acid transport. A proof-of-concept PET/CT study in pigs. Nucl Med Biol 2022; 114-115:49-57. [PMID: 36095922 DOI: 10.1016/j.nucmedbio.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for bile acids to function as detergents and signal carriers. Perturbation of the EHC by disease or drugs may lead to serious and life-threatening liver and gastrointestinal disorders. In this proof-of-concept study in pigs, we investigate the potential of N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly) as tracer for quantitative positron emission tomography (PET) of the EHC of conjugated bile acids. METHODS The biodistribution of [18F]FBCGly was investigated by PET/CT in domestic pigs following intravenous and intraileal administration of the tracer. Hepatic kinetics were estimated from PET and blood data using a 2-tissue compartmental model and dual-input of [18F]FBCGly. The ileal uptake of [18F]FBCGly was investigated with co-injection of nifedipine and endogenous cholyltaurine. Dosimetry was estimated from the PET data using the Olinda 2.0 software. Blood, bile and urine samples were analyzed for possible fluorine-18 labelled metabolites of [18F]FBCGly. RESULTS [18F]FBCGly was rapidly taken up by the liver and excreted into bile, and underwent EHC without being metabolized. Both nifedipine and endogenous cholyltaurine inhibited the ileal uptake of [18F]FBCGly. The flow-dependent hepatic uptake clearance was estimated to median 1.2 mL blood/min/mL liver tissue. The mean residence time of [18F]FBCGly in hepatocytes was 4.0 ± 1.1 min. Critical organs for [18F]FBCGly were the gallbladder wall (0.94 mGy/MBq) and the small intestine (0.50 mGy/MBq). The effective dose for [18F]FBCGly was 36 μSv/MBq. CONCLUSION We have shown that [18F]FBCGly undergoes EHC in pigs without being metabolized and that its ileal uptake is inhibited by nifedipine and endogenous bile acids. Combined with our previous findings in rats, we believe that [18F]FBCGly has potential as PET tracer for assessment of EHC of conjugated bile acids under physiological conditions as well as conditions with perturbed hepatic and ileal bile acid transport.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Frank Viborg Mortensen
- Department of Surgical Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Cai L, He S, Zheng X, Li J, Wang H, Liu Y, Zhang L. Research on preparation and in vitro evaluation of the dendrimer-peptide nuclear acid conjugate for amplification pretargeting. J Labelled Comp Radiopharm 2021; 64:428-439. [PMID: 34330148 DOI: 10.1002/jlcr.3937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022]
Abstract
Amplification pretargeting has the potential to increase the tracer's accumulation in the tumor. This study aimed to develop a three-step amplification pretargeting strategy in nuclear medicine with a polymer conjugated with multiple copies of peptide nuclear acid (PNA). In this study, the tracer 18 F-labeled complementary PNA (18 F-cPNA) was prepared by click-chemistry with high radiochemical purity (>99%) and great stability in vitro. The PAMMA dendrimer generation 4 (G4) was conjugated with multiple copies of PNAs. The average number of PNA groups in the G4-PNA conjugate was determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and the accessibility to the 18 F-cPNA was identified by size-exclusion high-performance liquid chromatography (SE-HPLC). There were approximately 11.7 of 64 carboxyl groups modified with PNAs, of which more than 99% were accessible to 18 F-cPNA. 18 F-cPNA was added to a mixture of CC49-cPNA and G4-PNA, and the complex exhibited a single peak on high-performance liquid chromatography (HPLC) as evidence of complete hybridization between 18 F-cPNA and CC49-cPNA/G4-PNA. The LS174T tumor cells were incubated with CC49-cPNA followed by G4-PNA as an amplification platform before 18 F-cPNA was added to hybridize with CC49-cPNA/G4-PNA. Compared with conventional pretargeting without G4-PNA, the radioactivity signal was amplified about four times, which demonstrated that the dendrimer-PNA conjugate plays a crucial role in signal amplification.
Collapse
Affiliation(s)
- Le Cai
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Shuhua He
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Zheng
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wang
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Liu
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lan Zhang
- Radiopharmaceuticals Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Liang C, Zhou XH, Gong PM, Niu HY, Lyu LZ, Wu YF, Han X, Zhang LW. Lactiplantibacillus plantarum H-87 prevents high-fat diet-induced obesity by regulating bile acid metabolism in C57BL/6J mice. Food Funct 2021; 12:4315-4324. [PMID: 34031676 DOI: 10.1039/d1fo00260k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bile salt hydrolase (BSH)-producing bacteria are negatively related to the body weight gain and energy storage of the host. We aimed to obtain a novel BSH-producing strain with excellent anti-obesity effect and explained its mechanism. Here, we selected a strain named Lactiplantibacillus plantarum H-87 (H-87) with excellent ability to hydrolyze glycochenodeoxycholic acid (GCDCA) and tauroursodeoxycholic acid (TUDCA) in vitro from 12 lactobacilli, and evaluated its anti-obesity effect in high-fat diet (HFD)-fed C57BL/6J mice. The results suggested that H-87 could inhibit HFD-induced body weight gain, fat accumulation, liver lipogenesis and injury, insulin resistance and dyslipidemia. In addition, H-87 could colonize in the ileum and hydrolyze GCDCA and TUDCA, reflected as changes in the concentrations of GCDCA, TUDCA, CDCA and UDCA in the ileum or liver. Furthermore, the study identified that H-87 reduced TUDCA and GCDCA levels in the ileum, which decreased the GLP-1 secretion by L cells to alleviate insulin resistance in HFD-fed mice. Furthermore, H-87 increased the CDCA level in the ileum and liver to activate FXR signaling pathways to inhibit liver lipogenesis in HFD-fed mice. In addition, the decrease of intestinal conjugated bile acids (TUDCA and GCDCA) also increased fecal lipid content and decreased intestinal lipid digestibility. In conclusion, H-87 could inhibit liver fat deposition, insulin resistance and lipid digestion by changing bile acid enterohepatic circulation, and eventually alleviate HFD-induced obesity.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150010, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Huang X, Wang B, Chen R, Zhong S, Gao F, Zhang Y, Niu Y, Li C, Shi G. The Nuclear Farnesoid X Receptor Reduces p53 Ubiquitination and Inhibits Cervical Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:583146. [PMID: 33889569 PMCID: PMC8056046 DOI: 10.3389/fcell.2021.583146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
The role of farnesoid X receptor (FXR) in cervical cancer and the underlying molecular mechanism remain largely unknown. Therefore, this study aimed to assess the mechanism of FXR in cervical cancer. Western blot, qRT-PCR, and immunohistochemistry demonstrated that FXR was significantly reduced in squamous cell carcinoma tissues, although there were no associations of metastasis and TNM stage with FXR. In Lenti-FXR cells obtained by lentiviral transfection, the overexpression of FXR reduced cell viability and colony formation. Compared with the Lenti-Vector groups, the overexpression of FXR induced early and late apoptosis and promoted G1 arrest. With time, early apoptosis decreased, and late apoptosis increased. In tumor xenograft experiments, overexpression of FXR upregulated small heterodimer partner (SHP), murine double minute-2 (MDM2), and p53 in the nucleus. Co-immunoprecipitation (Co-IP) showed that SHP directly interacted with MDM2, which is important to protect p53 from ubiquitination. Nutlin3a increased MDM2 and p53 amounts in the Lenti-Vector groups, without effects in the Lenti-FXR groups. Silencing SHP reduced MDM2 and p53 levels in the Lenti-FXR groups, and Nutlin3a counteracted these effects. Taken together, these findings suggest that FXR inhibits cervical cancer via upregulation of SHP, MDM2, and p53.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Runji Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Congzhu Li
- Department of Gynecology, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur J Med Chem 2020; 205:112629. [PMID: 32956956 DOI: 10.1016/j.ejmech.2020.112629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 01/12/2023]
Abstract
With the development of positron emission tomography (PET) technology, a variety of PET imaging agents labeled with radionuclide 18F have been developed and widely used in the diagnosis and treatment of various clinical diseases in recent years. For example, they have showed a great value of study in the field of tumor detection, tumor treatment and evaluation of tumor therapy in a non-invasive, qualitative and quantitative way. In this review, we highlight the recent development in chemical synthesis, structure and characterization, imaging characterization, and potential applications of these 18F labeled small molecule PET imaging agents for the past five years. The development and application of 18F labeled small molecules will expand our knowledge of the function and distribution of diseases-related molecular targets and shed light on the diagnosis and treatment of various diseases including tumors.
Collapse
|
8
|
Metal-Based Complexes as Pharmaceuticals for Molecular Imaging of the Liver. Pharmaceuticals (Basel) 2019; 12:ph12030137. [PMID: 31527492 PMCID: PMC6789861 DOI: 10.3390/ph12030137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
This article reviews the use of metal complexes as contrast agents (CA) and radiopharmaceuticals for the anatomical and functional imaging of the liver. The main focus was on two established imaging modalities: magnetic resonance imaging (MRI) and nuclear medicine, the latter including scintigraphy and positron emission tomography (PET). The review provides an overview on approved pharmaceuticals like Gd-based CA and 99mTc-based radiometal complexes, and also on novel agents such as 68Ga-based PET tracers. Metal complexes are presented by their imaging modality, with subsections focusing on their structure and mode of action. Uptake mechanisms, metabolism, and specificity are presented, in context with advantages and limitations of the diagnostic application and taking into account the respective imaging technique.
Collapse
|
9
|
Frisch K, Kjærgaard K, Horsager J, Schacht AC, Munk OL. Human biodistribution, dosimetry, radiosynthesis and quality control of the bile acid PET tracer [N-methyl- 11C]cholylsarcosine. Nucl Med Biol 2019; 72-73:55-61. [PMID: 31330413 DOI: 10.1016/j.nucmedbio.2019.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION [N-methyl-11C]cholylsarcosine ([11C]CSar) is a tracer for imaging and quantitative assessment of intrahepatic cholestatic liver diseases and drug-induced cholestasis by positron emission tomography (PET). The purpose of this study is to determine whole-body biodistribution and dosimetry of [11C]CSar in healthy humans. The results are compared with findings in a patient with primary sclerosing cholangitis (PSC) and a patient with primary biliary cholangitis (PBC) as well as with preclinical findings in pigs. Radiosynthesis and quality control for preparation of [11C]CSar for clinical use are also presented. METHODS Radiosynthesis and quality control of [11C]CSar were set up in compliance with Danish/European regulations. Both healthy participants (3 females, 3 males) and patients underwent whole-body PET/CT to determine the biodistribution of [11C]CSar. The two patients were under treatment with ursodeoxycholic acid at the time of the study. Dosimetry was estimated from the PET data using the Olinda 2.0 software. RESULTS The radiosynthesis provided [11C]CSar in a solution ready for injection. The biodistribution studies revealed that gallbladder wall, small intestine, and liver were critical organs in both healthy participants and patients with the gallbladder wall receiving the highest dose (up to 0.5 mGy/MBq). The gender-averaged (±SD) effective dose for the healthy participants was 6.2 ± 1.4 μSv/MBq. The effective dose for the PSC and the PBC patient was 5.2 and 7.0 μSv/MBq, respectively. CONCLUSION A radiosynthesis for preparation of [11C]CSar for clinical use was developed and approved by the Danish Medicines Agency. The most critical organ was the gallbladder wall although the amount of [11C]CSar in the gallbladder was found to vary significantly between individuals. The estimated effective dose for humans was comparable to that estimated in anesthetized pigs although the absorbed dose estimates to some organs, such as the stomach, was different. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: [11C]CSar PET/CT enables detailed quantitative assessment of patients with cholestatic liver disease by tracing the separate hepatobiliary transport steps of endogenous bile acids. The present work offers a radiosynthetic method and dosimetry data suitable for clinical implementation of [11C]CSar.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark.
| | - Kristoffer Kjærgaard
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Christina Schacht
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Fluorine-18 click radiosynthesis and microPET/CT evaluation of a small peptide-a potential PET probe for carbonic anhydrase IX. Bioorg Med Chem 2019; 27:785-789. [DOI: 10.1016/j.bmc.2019.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
|
11
|
Lu X, Wang C, Li X, Gu P, Jia L, Zhang L. Synthesis and preliminary evaluation of 18F-icotinib for EGFR-targeted PET imaging of lung cancer. Bioorg Med Chem 2018; 27:545-551. [PMID: 30611635 DOI: 10.1016/j.bmc.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/23/2023]
Abstract
Epidermal growth factor receptor (EGFR) has emerged as an attracting target in the field of imaging and treatment for non-small cell lung cancer (NSCLC). Radiolabeled EGFR-tyrosine kinase inhibitors (EGFR-TKIs) specifically targeting EGFR are deemed as promising probes for the imaging of NSCLC. This study aimed to label icotinib (one kind of EGFR-TKI) with 18F through click reaction to develop a new EGFR-targeting PET probe-18F-icotinib. 18F-icotinib was obtained in 44.81% decay-corrected yield in 100 min synthesis time with 34 GBq/μmol specific activity and >99% radiochemical purity at the end of synthesis. The identity of the product was confirmed by co-injection with 18F-icotinib and 19F-icotinib. The Log P was 1.28 ± 0.04 (n = 6). The tracer displayed excellent stability after incubation for 4 h in vitro. 18F-icotinib showed satisfying binding ability to A549 NSCLC cells, which could be inhibited by icotinib. PET imaging studies demonstrated a specific uptake of the radiotracer (0.90 ± 0.24% ID/g) in A549 tumor-bearing mice, while lower uptake was observed in heart, lung and spleen at 1.5 h post injection. Inmunohistochemical staining confirmed that the A549 tumor was EGFR-positive. Therefore, we considered that 18F-icotinib was a highly promising compound for EGFR-based tumor PET imaging.
Collapse
Affiliation(s)
- Xinmiao Lu
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, Shanghai 201800, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China; Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Shanghai 200433, PR China
| | - Peilin Gu
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, Shanghai 201800, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lina Jia
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, Shanghai 201800, PR China.
| | - Lan Zhang
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, Shanghai 201800, PR China.
| |
Collapse
|
12
|
Validation of hepatobiliary transport PET imaging in liver function assessment: Evaluation of 3β-[ 18F]FCA in mouse models of liver disease. Nucl Med Biol 2018; 68-69:40-48. [PMID: 30595544 DOI: 10.1016/j.nucmedbio.2018.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
Recently, our research group reported on the development of 3β-[18F]Fluorocholic acid (3β-[18F]FCA), a 18F labeled bile acid to detect drug interference with the bile acid transporters (drug-induced cholestasis). It was hypothesized that 3β-[18F]FCA could also be used as a non-invasive tool to monitor (regional) liver function in vivo in different liver diseases through altered expression of bile acid transporters. METHODS Hepatobiliary transport of 3β-[18F]FCA was evaluated in four murine liver disease models. Acute liver injury was induced by oral gavage of an acetaminophen (APAP) overdose (300 mg/kg). Chronic cholangiopathy and non-alcoholic steatohepatitis (NASH) were induced by feeding mice 3,5-diethoxycarbonyl- 1,4-dihydrocollidine (DDC) diet or methionine and choline deficient (MCD) diet, respectively. Hepatocellular carcinoma (HCC) was evoked by intraperitoneal injection of 35 mg/kg diethylnitrosamine (DEN) once a week for 23 weeks. Gene expression of the murine bile acid transporters was determined by RT-qPCR. RESULTS Hepatobiliary transport of 3β-[18F]FCA was not significantly altered after an APAP overdose. Mice fed the DDC or MCD diet showed impaired transport of 3β-[18F]FCA compared to baseline, which was associated with altered expression of the bile acid transporters ntcp, oatp4 and mrp2. After recovery from DDC- and MCD-induced liver injury, 3β-[18F]FCA parameters returned to baseline. Global hepatobiliary transport of 3β-[18F]FCA in HCC bearing mice was not significantly different compared to control mice. However, HCC lesions showed reduced hepatic uptake of the tracer (tumor-to-background: 0.45 ± 0.13), which was in line with decreased in expression of basolateral bile acid uptake transporters nctp and oatp4 in tumor tissue. CONCLUSION 3β-[18F]FCA is a useful tool to assess and longitudinally follow-up liver function in several mouse models for liver diseases that are associated with altered expression of the bile acid transporters. These results point towards the (pre)clinical utility of 3β-[18F]FCA as a PET tracer to monitor altered liver functionality in patients with chronic liver diseases.
Collapse
|
13
|
Frisch K, Stimson DHR, Venkatachalam T, Pierens GK, Keiding S, Reutens D, Bhalla R. N-(4-[ 18F]fluorobenzyl)cholylglycine, a novel tracer for PET of enterohepatic circulation of bile acids: Radiosynthesis and proof-of-concept studies in rats. Nucl Med Biol 2018; 61:56-62. [PMID: 29783201 DOI: 10.1016/j.nucmedbio.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for regulation of intracellular concentrations of bile acids and their function as detergents and signal carriers. Only few bile acid-derived imaging agents have been synthesized and hitherto none have been evaluated for studies of EHC. We hypothesized that N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly), a novel fluorine-18 labeled derivative of endogenous cholylglycine, would be a suitable tracer for PET of the EHC of conjugated bile acids, and we report here a radiosynthesis of [18F]FBCGly and a proof-of-concept study by PET/MR in rats. METHODS A radiosynthesis of [18F]FBCGly was developed based on reductive alkylation of glycine with 4-[18F]fluorobenzaldehyde followed by coupling to cholic acid. [18F]FBCGly was investigated in vivo by dynamic PET/MR in anesthetized rats; untreated or treated with cholyltaurine or rifampicin. Possible in vivo metabolites of [18F]FBCGly were investigated by analysis of blood and bile samples, and the stability of [18F]FBCGly towards enzymatic de-conjugation by Cholylglycine Hydrolase was tested in vitro. RESULTS [18F]FBCGly was produced with a radiochemical purity of 96% ± 1% and a non-decay corrected radiochemical yield of 1.0% ± 0.3% (mean ± SD; n = 12). PET/MR studies showed that i.v.-administrated [18F]FBCGly underwent EHC within 40-60 min with a rapid transhepatic transport from blood to bile. In untreated rats, the radioactivity concentration of [18F]FBCGly was approximately 15 times higher in bile than in liver tissue. Cholyltaurine and rifampicin inhibited the biliary secretion of [18F]FBCGly. No fluorine-18 metabolites of [18F]FBCGly were observed. CONCLUSION We have developed a radiosynthesis of a novel fluorine-18 labeled bile acid derivative, [18F]FBCGly, and shown by PET/MR that [18F]FBCGly undergoes continuous EHC in rats without metabolizing. This novel tracer may prove useful in PET studies on the effect of drugs or diseases on the EHC of conjugated bile acids.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Damion H R Stimson
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Taracad Venkatachalam
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Susanne Keiding
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| | - Rajiv Bhalla
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
14
|
Evaluating Hepatobiliary Transport with 18F-Labeled Bile Acids: The Effect of Radiolabel Position and Bile Acid Structure on Radiosynthesis and In Vitro and In Vivo Performance. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6345412. [PMID: 29853807 PMCID: PMC5941726 DOI: 10.1155/2018/6345412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/12/2018] [Indexed: 11/17/2022]
Abstract
Introduction An in vivo determination of bile acid hepatobiliary transport efficiency can be of use in liver disease and preclinical drug development. Given the increased interest in bile acid Positron Emission Tomography- (PET-) imaging, a further understanding of the impact of 18-fluorine substitution on bile acid handling in vitro and in vivo can be of significance. Methods A number of bile acid analogues were conceived for nucleophilic substitution with [18F]fluoride: cholic acid analogues of which the 3-, 7-, or 12-OH function is substituted with a fluorine atom (3α-[18F]FCA; 7β-[18F]FCA; 12β-[18F]FCA); a glycocholic and chenodeoxycholic acid analogue, substituted on the 3-position (3β-[18F]FGCA and 3β-[18F]FCDCA, resp.). Uptake by the bile acid transporters NTCP and OATP1B1 was evaluated with competition assays in transfected CHO and HEK cell lines and efflux by BSEP in membrane vesicles. PET-scans with the tracers were performed in wild-type mice (n = 3 per group): hepatobiliary transport was monitored and compared to a reference tracer, namely, 3β-[18F]FCA. Results Compounds 3α-[18F]FCA, 3β-[18F]FGCA, and 3β-[18F]FCDCA were synthesized in moderate radiochemical yields (4–10% n.d.c.) and high radiochemical purity (>99%); 7β-[18F]FCA and 12β-[18F]FCA could not be synthesized and included further in this study. In vitro evaluation showed that 3α-FCA, 3β-FGCA, and 3β-FCDCA all had a low micromolar Ki-value for NTCP, OATP1B1, and BSEP. In vivo, 3α-[18F]FCA, 3β-[18F]FGCA, and 3β-[18F]FCDCA displayed hepatobiliary transport with varying efficiency. A slight yet significant difference in uptake and efflux rate was noticed between the 3α-[18F]FCA and 3β-[18F]FCA epimers. Conjugation of 3β-[18F]FCA with glycine had no significant effect in vivo. Compound 3β-[18F]FCDCA showed a significantly slower hepatic uptake and efflux towards gallbladder and intestines. Conclusion A set of 18F labeled bile acids was synthesized that are substrates of the bile acid transporters in vitro and in vivo and can serve as PET-biomarkers for hepatobiliary transport of bile acids.
Collapse
|
15
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
De Lombaerde S, Neyt S, Kersemans K, Verhoeven J, Devisscher L, Van Vlierberghe H, Vanhove C, De Vos F. Synthesis, in vitro and in vivo evaluation of 3β-[18F]fluorocholic acid for the detection of drug-induced cholestasis in mice. PLoS One 2017; 12:e0173529. [PMID: 28273180 PMCID: PMC5342262 DOI: 10.1371/journal.pone.0173529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction Drug-induced cholestasis is a liver disorder that might be caused by interference of drugs with the hepatobiliary bile acid transporters. It is important to identify this interference early on in drug development. In this work, Positron Emission Tomography (PET)-imaging with a 18F labeled bile acid analogue was introduced to detect disturbed hepatobiliary transport of bile acids. Methods 3β-[18F]fluorocholic acid ([18F]FCA) was prepared by nucleophilic substitution of a mesylated precursor with [18F]fluoride, followed by deprotection with sodium hydroxide. Transport of [18F]FCA was assessed in vitro using CHO-NTCP, HEK-OATP1B1, HEK-OATP1B3 transfected cells and BSEP & MRP2 membrane vesicles. Investigation of [18F]FCA metabolites was performed with primary mouse hepatocytes. Hepatobiliary transport of [18F]FCA was evaluated in vivo in wild-type, rifampicin and bosentan pretreated FVB-mice by dynamic μPET scanning. Results Radiosynthesis of [18F]FCA was achieved in a moderate radiochemical yield (8.11 ± 1.94%; non-decay corrected; n = 10) and high radiochemical purity (>99%). FCA was transported by the basolateral bile acid uptake transporters NTCP, OATP1B1 and OATP1B3. For canalicular efflux, BSEP and MRP2 are the relevant bile acid transporters. [18F]FCA was found to be metabolically stable. In vivo, [18F]FCA showed fast hepatic uptake (4.5 ± 0.5 min to reach 71.8 ± 1.2% maximum % ID) and subsequent efflux to the gallbladder and intestines (93.3 ± 6.0% ID after 1 hour). Hepatobiliary transport of [18F]FCA was significantly inhibited by both rifampicin and bosentan. Conclusion A 18F labeled bile acid analogue, [18F]FCA, has been developed that shows transport by NTCP, OATP, MRP2 and BSEP. [18F]FCA can be used as a probe to monitor disturbed hepatobiliary transport in vivo and accumulation of bile acids in blood and liver during drug development.
Collapse
Affiliation(s)
- Stef De Lombaerde
- Faculty of Pharmaceutical Sciences, Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
- * E-mail:
| | - Sara Neyt
- Faculty of Pharmaceutical Sciences, Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Ghent University Hospital, Nuclear Medicine, Ghent, Belgium
| | - Jeroen Verhoeven
- Faculty of Pharmaceutical Sciences, Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Ghent University Hospital, Gastroenterology and Hepatology, Ghent, Belgium
| | | | | | - Filip De Vos
- Faculty of Pharmaceutical Sciences, Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
18
|
Testa A, Dall'Angelo S, Mingarelli M, Augello A, Schweiger L, Welch A, Elmore CS, Sharma P, Zanda M. Design, synthesis, in vitro characterization and preliminary imaging studies on fluorinated bile acid derivatives as PET tracers to study hepatic transporters. Bioorg Med Chem 2016; 25:963-976. [PMID: 28011201 DOI: 10.1016/j.bmc.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
With the aim of identifying a fluorinated bile acid derivative that could be used as [18F]-labeled Positron Emission Tomography (PET) tracer for imaging the in vivo functioning of liver transporter proteins, and particularly of OATP1B1, three fluorinated bile acid triazole derivatives of cholic, deoxycholic and lithocholic acid (CATD, DCATD and LCATD 4a-c, respectively) were synthesized and labeled with tritium. In vitro transport properties were studied with cell-based assays to identify the best substrate for OATP1B1. In addition, the lead compound, LCATD (4c), was tested as a substrate of other liver uptake transporters OATP1B3, NTCP and efflux transporter BSEP to evaluate its specificity of liver transport. The results suggest that 4c is a good substrate of OATP1B1 and NTCP, whereas it is a poor substrate of OATP1B3. The efflux transporter BSEP also appears to be involved in the excretion of 4c from hepatocytes. The automated radiosynthesis of [18F]-4c was accomplished in a multi-GBq scale and a pilot imaging experiment in a wild type rat was performed after i.v. administration to assess the biodistribution and clearance of the tracer. PET imaging revealed that radioactivity was primarily located in the liver (tmax=75s) and cleared exclusively through the bile, thus allowing to image the hepatobiliary excretion of bile acids in the animal model. These findings suggest that [18F]-LCATD 4c is a promising PET probe for the evaluation of hepatic transporters OATP1B1, NTCP and BSEP activity with potential for studying drug-drug interactions and drug-induced toxicity involving these transporters.
Collapse
Affiliation(s)
- Andrea Testa
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Sergio Dall'Angelo
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Marco Mingarelli
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Andrea Augello
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lutz Schweiger
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Andy Welch
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Charles S Elmore
- Isotope Chemistry, Drug Safety and Metabolism, AstraZeneca R&D, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Pradeep Sharma
- Safety and ADME Modeling, DSM, AstraZeneca R&D, Cambridge CB4 0WG, UK.
| | - Matteo Zanda
- University of Aberdeen, Kosterlitz Centre for Therapeutics and John Mallard Scottish P.E.T. Centre, Foresterhill, Aberdeen AB25 2ZD, UK; C.N.R. - I.C.R.M., via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
19
|
Neyt S, Vliegen M, Verreet B, De Lombaerde S, Braeckman K, Vanhove C, Huisman MT, Dumolyn C, Kersemans K, Hulpia F, Van Calenbergh S, Mannens G, De Vos F. Synthesis, in vitro and in vivo small-animal SPECT evaluation of novel technetium labeled bile acid analogues to study (altered) hepatic transporter function. Nucl Med Biol 2016; 43:642-9. [PMID: 27513813 DOI: 10.1016/j.nucmedbio.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Hepatobiliary transport mechanisms are crucial for the excretion of substrate toxic compounds. Drugs can inhibit these transporters, which can lead to drug-drug interactions causing toxicity. Therefore, it is important to assess this early during the development of new drug candidates. The aim of the current study is the (radio)synthesis, in vitro and in vivo evaluation of a technetium labeled chenodeoxycholic and cholic acid analogue: [(99m)Tc]-DTPA-CDCA and [(99m)]Tc-DTPA-CA, respectively, as biomarker for disturbed transporter functionality. METHODS [99mTc]-DTPA-CDCA([(99m)Tc]-3a) and [99mTc]-DTPA-CA ([(99m)Tc]-3b) were synthesized and evaluated in vitro and in vivo. Uptake of both tracers was investigated in NTCP, OCT1, OATP1B1, OATP1B3 transfected cell lines. Km and Vmax values were determined and compared to [(99m)Tc]-mebrofenin ([(99m)Tc]-MEB). Efflux was investigated by means of CTRL, MRP2 and BSEP transfected inside-out vesicles. Metabolite analysis was performed using pooled human liver S9. Wild type (n=3) and rifampicin treated (n=3) mice were intravenously injected with 37MBq of tracer. After dynamic small-animal SPECT and short CT acquisitions, time-activity curves of heart, liver, gallbladder and intestines were obtained. RESULTS We demonstrated that OATP1B1 and OATP1B3 are the involved uptake transporters of both compounds. Both tracers show a higher affinity compared to [(99m)Tc]-MEB, but are in a similar range as endogenous bile acids for OATP1B1 and OATP1B3. [(99m)Tc]-3a shows higher affinities compared to [(99m)Tc]-3b. Vmax values were lower compared to [(99m)Tc]-MEB, but in the same range as endogenous bile acids. MRP2 was identified as efflux transporter. Less than 7% of both radiotracers was metabolized in the liver. In vitro results were confirmed by in vivo results. Uptake in the liver and efflux to gallbladder + intestines and urinary bladder of both tracers was observed. Transport was inhibited by rifampicin. CONCLUSION The involved transporters were identified; both tracers are taken up in the hepatocytes by OATP1B1 andOATP1B3 with Km and Vmax values in the same range as endogenous bile acids and are secreted into bile canaliculi via MRP2. Dynamic small-animal SPECT imaging can be a useful noninvasive method of visualizing and quantifying hepatobiliary transporter functionality and disturbances thereof in vivo, which could predict drug pharmacokinetics.
Collapse
Affiliation(s)
- Sara Neyt
- Laboratory of Radiopharmacy, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium.
| | - Maarten Vliegen
- Preclinical Development & Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Bjorn Verreet
- Preclinical Development & Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Stef De Lombaerde
- Laboratory of Radiopharmacy, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium
| | - Kim Braeckman
- iMinds Medical IT-IBITech-MEDISIP-INFINITY, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- iMinds Medical IT-IBITech-MEDISIP-INFINITY, Ghent University, Ghent, Belgium
| | - Maarten Thomas Huisman
- Preclinical Development & Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Caroline Dumolyn
- Laboratory of Radiopharmacy, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Laboratory of Radiopharmacy, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium
| | - Geert Mannens
- Preclinical Development & Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ottergemsesteenweg 460, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016; 116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karol Kacprzak
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Iwona Skiera
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Monika Piasecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| | - Zdzisław Paryzek
- Bioorganic Chemistry Department, Faculty of Chemistry, Adam Mickiewicz University, Ul. Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
21
|
Nurunnabi M, Khatun Z, Revuri V, Nafiujjaman M, Cha S, Cho S, Moo Huh K, Lee YK. Design and strategies for bile acid mediated therapy and imaging. RSC Adv 2016. [DOI: 10.1039/c6ra10978k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioinspired materials have received substantial attention across biomedical, biological, and drug delivery research because of their high biocompatibility and lower toxicity compared with synthetic materials.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Polymer Science & Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
- Department of Chemical & Biological Engineering
| | - Zehedina Khatun
- Department of Polymer Science & Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Md Nafiujjaman
- Department of Green Bioengineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Seungbin Cha
- Department of Biomedical Chemistry
- Konkuk University
- Chungju-si
- Republic of Korea
| | - Sungpil Cho
- KB Biomed Inc
- Chungju 380-702
- Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science & Engineering
- Chungnam National University
- Daejeon 305-764
- Republic of Korea
| | - Yong-kyu Lee
- Department of Chemical & Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Green Bioengineering
| |
Collapse
|
22
|
Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem 2015; 7:1109-35. [DOI: 10.4155/fmc.15.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bile acids (BAs) are experiencing a new life. Next to their ancestral roles in lipid digestion and solubilization, BAs are today recognized signaling molecules involved in many physiological functions. These signaling pathways involve the activation of metabolic nuclear receptors, mainly the BA sensor FXR, and the dedicated membrane G protein-coupled receptor, GPBAR1 (TGR5). As a consequence, the discovery of GPBAR1/FXR selective or dual modulators represents an important answer to the urgent demand of new pharmacological opportunity for several human diseases including dyslipidemia, cholestasis, nonalcoholic steatohepatitis, Type 2 diabetes and inflammation. Targeted oriented discovery of natural compounds and medicinal chemistry manipulation have allowed the development of promising drug candidates.
Collapse
|
23
|
Huang F, Wang T, Lan Y, Yang L, Pan W, Zhu Y, Lv B, Wei Y, Shi H, Wu H, Zhang B, Wang J, Duan X, Hu Z, Wu X. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior. Front Behav Neurosci 2015; 9:70. [PMID: 25870546 PMCID: PMC4378301 DOI: 10.3389/fnbeh.2015.00070] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity.
Collapse
Affiliation(s)
- Fei Huang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Tingting Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yunyi Lan
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Li Yang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center Baton Rouge, LA, USA
| | - Yonghui Zhu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Boyang Lv
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Yuting Wei
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hailian Shi
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Beibei Zhang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Jie Wang
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaofeng Duan
- Pharmacy Department, Shanghai East Hospital Shanghai, China
| | - Zhibi Hu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, the State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|
24
|
Stieger B, Unadkat JD, Prasad B, Langer O, Gali H. Role of (drug) transporters in imaging in health and disease. Drug Metab Dispos 2014; 42:2007-15. [PMID: 25249691 PMCID: PMC5611776 DOI: 10.1124/dmd.114.059873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
This report is the summary of presentations at the symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics, April 26-30, at Experimental Biology 2014 in San Diego, CA. The presentations focused on the role of transporters in imaging in health and disease and on assessing transporter function in vivo. Imaging is an important diagnostic tool in clinics and is a novel tool for in vivo visualization of transporter function. Many imaging substrates and endogenous markers for organ function are organic anions. In this symposium, the bile salt transporter sodium taurocholate cotransporting polypeptide and the liver organic anion transporting polypeptides (OATPs) as well as the renal organic anion transporters (OATs) were addressed in detail; e.g., OATPs mediate transport of contrast agents used for magnetic resonance imaging of the liver or transport agents used for hepatobiliary scintigraphy, and OATs transport substances used in renography. In addition, the symposium also focused on the multidrug-resistance transporter 1 (MDR1 or P-gp), which is the most important gatekeeper in epithelial or endothelial barriers for preventing entry of potentially harmful substances into organs. Novel substrates suitable for positron emission tomography (PET) allow the study of such transporters at the blood-brain barrier or while they are mediating uptake of drugs into hepatocytes, and, importantly, PET tracers also now allow renography. Finally, quantitative data on transporter expression in human organs allow the development of improved physiologically based pharmacokinetic (PBPK) models for drug disposition. Hence, the combined efforts using novel substrates for in vivo visualization of transporters and quantification of transporters will lead to a deeper understanding of transporter function in disease and allow development of novel PBPK models for disease states.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Jashvant D Unadkat
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Bhagwat Prasad
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Oliver Langer
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| | - Hariprasad Gali
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zurich, Switzerland (B.S.); Department of Pharmaceutics, University of Washington, Seattle, Washington (J.D.U., B.P.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria and Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (O.L.); and the Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (H.G.)
| |
Collapse
|
25
|
|