1
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
2
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
3
|
Tang Z, Feng W, Yang Y, Wang Q. Gemcitabine-loaded RGD modified liposome for ovarian cancer: preparation, characterization and pharmacodynamic studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3281-3290. [PMID: 31571830 PMCID: PMC6756163 DOI: 10.2147/dddt.s211168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
Abstract
Background Ovarian cancer is the third leading cause of death among gynecological cancers in women in China. Chemotherapy is an important method for comprehensive treatment of ovarian cancer, but the curative effect is poor. Purpose In this study, gemcitabine (GEM) -loaded RGD modified liposomes (LPs) were developed by the emulsification-solvent evaporation method and evaluated for their antitumor activity in vitro and in vivo. Methods The physicochemical properties of LPs such as particle size, zeta potential and in vitro drug release were investigated. We also demonstrated the effect of RGD-GEM-PEG LPs in ovarian cancer. Results RGD-PEG3500-DSPE GEM LPs had a uniform spherical morphology. The mean particle size and polydispersity index were determined to be 106.7 nm and 0.13 respectively. The ER% and DL% of the formulation were 79.6±3.1% and 6.1±1.4% respectively. Compared with the free drug, RGD modified GEM LPs had sustained-release properties in vitro. In vivo, compared with the DiD-RGD-PEG3500-DSPE GEM LPs group, free DiD-GEM and DiD-GEM LPs had no obvious fluorescence intensity in tumor of mice at all times, indicating that ordinary liposomes and drugs had no tumor targeting function. RGD-PEG3500-DSPE GEM LPs showed a superior antiproliferative effect on SKOV3 cells and had a better antitumor effect in vivo than non-modified LPs. Conclusion These results indicated that RGD-PEG3500-DSPE GEM LPs were a promising candidate for antitumor drug delivery.
Collapse
Affiliation(s)
- Zhongyuan Tang
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yiqing Yang
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qun Wang
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Niu L, Li J, Gu R, Wu Z, Zhu X, Gan H, Ma B, Jia B, Wang F, Meng Z, Wang X, Dou G. An optimized LC-MS/MS method for determination of HYNIC-3PRGD 2, a new promising imaging agent for tumor targeting, in rat plasma and its application. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:142-148. [PMID: 30077094 DOI: 10.1016/j.jchromb.2018.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/20/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
HYNIC-3PRGD2 is used to prepare a new 99mTc-radiolabeled tracer. HYNIC-3PRGD2, which has a high binding affinity for the integrin αvβ3 due to its special structure, has become a promising tumor imaging agent for diagnosis and monitor of the clinical response to therapeutic effects of anti-tumor agents. Here, we developed and validated a method for determination of HYNIC-3PRGD2 concentration in rat plasma using ultra-high performance liquid chromatography-tandem mass spectrometry system. Following sample extraction by methanol precipitation, satisfactory separation through chromatography was achieved on an hydrophilic reverse-phase C18 column AQ (2.1 mm × 100 mm, 2.7 μm) at a flow rate of 0.2 mL·min-1 with an gradient elution using mobile phase consisting of ultrapure water and acetonitrile fortified with 0.1% formic acid respectively. The calibration curve was developed over a linear range of 3.125-100 ng·mL-1 with the lower limit of quantification of 3.125 ng·mL-1. The HYNIC-3PRGD2 and its internal standard c(RGDfK)(RK5) were detected and quantified with the multiple reaction monitoring (MRM) mode on a triple-quadrupole tandem mass spectrometer. This method was successfully validated and applied for pharmacokinetic evaluation of HYNIC-3PRGD2 during pre-clinical experiments.
Collapse
Affiliation(s)
- Liyun Niu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jian Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Bing Jia
- Medical Isotopes Research Center, Peking University, Beijing 100191, China
| | - Fan Wang
- Medical Isotopes Research Center, Peking University, Beijing 100191, China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine-Georgia Campus, Suwanee, GA 30024, USA.
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
|
6
|
Pereira RCG, Soares DCF, Oliveira DCP, de Sousa GF, Vieira-Filho SA, Mercadante-Simões MO, Lula I, Silva-Cunha A, Duarte LP. Triterpenes from leaves of Cheiloclinium cognatum and their in vivo antiangiogenic activity. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:360-366. [PMID: 29388257 DOI: 10.1002/mrc.4716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Affiliation(s)
- Rafael C G Pereira
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Daniel C F Soares
- Universidade Federal de Itajubá, Campus Itabira, Rua Irmã Ivone Drumond, 200, Distrito Industrial II, CEP, Itabira, MG, 35903-087, Brazil
| | - Diogo C P Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Grasiely F de Sousa
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Sidney A Vieira-Filho
- Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, CEP, Ouro Preto, MG, 35400-000, Brazil
| | - Maria O Mercadante-Simões
- Departamento de Biologia Geral, Universidade de Montes Claros, Avenida Dr. Ruy Braga, s/n, CEP, Montes Claros, MG, 39401-089, Brazil
| | - Ivana Lula
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Armando Silva-Cunha
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucienir P Duarte
- Departamento de Química, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
7
|
Heijkants R, Willekens K, Schoonderwoerd M, Teunisse A, Nieveen M, Radaelli E, Hawinkels L, Marine JC, Jochemsen A. Combined inhibition of CDK and HDAC as a promising therapeutic strategy for both cutaneous and uveal metastatic melanoma. Oncotarget 2017; 9:6174-6187. [PMID: 29464063 PMCID: PMC5814203 DOI: 10.18632/oncotarget.23485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022] Open
Abstract
Very little to no improvement in overall survival has been seen in patients with advanced non-resectable cutaneous melanoma or metastatic uveal melanoma in decades, highlighting the need for novel therapeutic options. In this study we investigated as a potential novel therapeutic intervention for both cutaneous and uveal melanoma patients a combination of the broad spectrum HDAC inhibitor quisinostat and pan-CDK inhibitor flavopiridol. Both drugs are currently in clinical trials reducing time from bench to bedside. Combining quisinostat and flavopiridol shows a synergistic reduction in cell viability of all melanoma cell lines tested, irrespective of their driver mutations. This synergism was also observed in BRAFV600E mutant melanoma that had acquired resistance to BRAF inhibition. Mechanistically, loss of cell viability was, at least partly, due to induction of apoptotic cell death. The combination was also effectively inducing tumor regression in a preclinical setting, namely a patient-derived tumor xenograft (PDX) model of cutaneous melanoma, without increasing adverse effects. We propose that the quisinostat/flavopiridol combination is a promising therapeutic option for both cutaneous and uveal metastatic melanoma patients, independent of their mutational status or (acquired) resistance to BRAF inhibition.
Collapse
Affiliation(s)
- Renier Heijkants
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karen Willekens
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mark Schoonderwoerd
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Amina Teunisse
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Nieveen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
| | - Luuk Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aart Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Yehya AH, Asif M, Tan YJ, Sasidharan S, Abdul Majid AM, Oon CE. Broad spectrum targeting of tumor vasculature by medicinal plants: An updated review. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Liu Y, Mei L, Yu Q, Zhang Q, Gao H, Zhang Z, He Q. Integrin αvβ3 targeting activity study of different retro-inverso sequences of RGD and their potentiality in the designing of tumor targeting peptides. Amino Acids 2015; 47:2533-9. [DOI: 10.1007/s00726-015-2043-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023]
|
10
|
Yang G, Nie P, Kong Y, Sun H, Hou G, Han J. MicroPET imaging of tumor angiogenesis and monitoring on antiangiogenic therapy with an (18)F labeled RGD-based probe in SKOV-3 xenograft-bearing mice. Tumour Biol 2014; 36:3285-91. [PMID: 25501513 DOI: 10.1007/s13277-014-2958-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/05/2014] [Indexed: 11/30/2022] Open
Abstract
So far, there is no satisfactory imaging modality to monitor antiangiogenesis therapy of ovarian cancer noninvasively. The aim of this study was to evaluate the effectiveness and sensibility of an (18)F labeled Arg-Gly-Asp (RGD) peptide in imaging and monitoring antiangiogenic responds in SKOV-3 xenograft-bearing mice. (18)F-FB-NH-PEG4-E[PEG4-c(RGDfK)]2 (denoted as (18)F-RGD2) was synthesized and employed in this study. Mice bearing ovarian cancer SKOV-3 tumors were used for biodistribution and microPET imaging studies compared with (18)F-FDG imaging. Animals were treated with low-dose paclitaxel and the effect of paclitaxel therapy on (18)F-RGD2 accumulation was investigated. Microvascular density (MVD) of SKOV-3 tumors was detected to assess the reliability of (18)F-RGD2 in antiangiogenesis monitoring. Biodistribution studies for (18)F-RGD2 revealed favorable in vivo pharmacokinetic properties, with significant levels of receptor-specific tumor uptake determined via blocking studies. MicroPET imaging results demonstrated high contrast visualization of SKOV-3 tumors. And tumor to background ratio (T/NT) of (18)F-RGD2 uptake was significantly higher than that of (18)F-FDG. Studies on antiangiogenic therapy demonstrated percentage of injected dose per gram of tissue (%ID/g) tumor uptake of (18)F-RGD2 which was obviously decreased in the treatment group than the control group, especially at 60 min (by 31.31 ± 7.18 %, P = 0.009) and 120 min (by 38.92 ± 8.31 %, P < 0.001) after injection of (18)F-RGD2. MVD measurement of SKOV-3 tumors confirmed the finding of the biodistribution studies in monitoring antiangiogenesis therapy. (18)F-RGD2, with favorable biodistribution properties and specific affinity, is a promising tracer for tumor imaging and monitoring antiangiogenesis therapy in ovarian cancer SKOV-3 xenograft-bearing mice.
Collapse
Affiliation(s)
- Guangjie Yang
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, No.107 Wenhuaxi Road, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|