1
|
Muranaka Y, Mizutani A, Kobayashi M, Nakamoto K, Matsue M, Nishi K, Yamazaki K, Nishii R, Shikano N, Okamoto S, Kawai K. Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model. Int J Mol Sci 2022; 23:ijms23052467. [PMID: 35269610 PMCID: PMC8910731 DOI: 10.3390/ijms23052467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The effectiveness of L- and D-amino acids for detecting the early stage of infection in bacterial imaging was compared. We evaluated the accumulation of 3H-L-methionine (Met), 3H-D-Met, 3H-L-alanine (Ala), and 3H-D-Ala in E. coli EC-14 and HaCaT cells. Biological distribution was assessed in control and lung-infection-model mice with EC-14 using 3H-L- and D-Met, and 18F-FDG. A maximum accumulation of 3H-L- and D-Met, and 3H-L- and D-Ala occurred in the growth phase of EC-14 in vitro. The accumulation of 3H-L-Met and L-Ala was greater than that of 3H-D-Met and D-Ala in both EC-14 and HaCaT cells. For all radiotracers, the accumulation was greater in EC-14 than in HaCaT cells at early time points. The accumulation was identified at 5 min after injection in EC-14, whereas the accumulation gradually increased in HaCaT cells over time. There was little difference in biodistribution between 3H-L-and D-Met except in the brain. 3H-L- and D-Met were sensitive for detecting areas of infection after the spread of bacteria throughout the body, whereas 18F-FDG mainly detected primary infection areas. Therefore, 11C-L- and D-Met, radioisotopes that differ only in terms of 3H labeling, could be superior to 18F-FDG for detecting bacterial infection in lung-infection-model mice.
Collapse
Affiliation(s)
- Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Ishikawa, Japan; (Y.M.); (K.N.)
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Ishikawa, Japan; (A.M.); (M.K.); (S.O.)
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Ishikawa, Japan; (A.M.); (M.K.); (S.O.)
| | - Koya Nakamoto
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Ishikawa, Japan; (Y.M.); (K.N.)
| | - Miki Matsue
- Ishikawa Prefectural Institute of Public Health and Environmental Science, 1-11, Taiyogaoka, Kanazawa 920-1154, Ishikawa, Japan;
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Nagasaki, Japan;
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Chiba, Japan; (K.Y.); (R.N.)
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Chiba, Japan; (K.Y.); (R.N.)
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki 300-0394, Ibaraki, Japan;
| | - Shigefumi Okamoto
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Ishikawa, Japan; (A.M.); (M.K.); (S.O.)
- Advanced Health Care Science Research Unit, Innovative Integrated Bio-Research Core Institute for Frontier Science Initiative, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Ishikawa, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-1192, Ishikawa, Japan; (A.M.); (M.K.); (S.O.)
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji 910-1193, Fukui, Japan
- Correspondence: ; Tel.: +81-76-265-2527; Fax: +81-76-234-4366
| |
Collapse
|
2
|
Pearson T, Wendowski O, Powell PP. Enhanced small neutral but not branched chain amino acid transport after epigenetic sodium coupled neutral amino acid transporter-2 (SNAT2) cDNA expression in myoblasts. J Cachexia Sarcopenia Muscle 2021; 12:811-822. [PMID: 33982880 PMCID: PMC8200435 DOI: 10.1002/jcsm.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Skeletal muscle mass and function are partly maintained by the supply of amino acids, altered amino acid transport is an important cause of frailty that can lead to decreased independence with increasing age and slow trauma recovery. The system-A sodium coupled neutral amino acid transporter (SNAT)-2 coded by gene family SLC38A2 generates a 506 amino acid 56 kDa protein that is an important transporter of amino acids in skeletal muscle. Ageing is associated with a decrease in expression of SNAT2 transporters. METHODS In this study, we used the C2C12 cell line, using myoblast cells and cells differentiated into myotubes. We investigated if the expression of SNAT2 DNA would enhance intracellular amino acid levels and increase their availability for protein synthesis. RESULTS In control myoblasts and myotubes, we found significantly decreased expression of SNAT2 (6.5× decrease, n = 4 per group, P < 0.05) in myotubes than found in myoblasts. After transfection with a SNAT2-eGFP cDNA plasmid, C2C12 myoblasts significantly increased perinuclear punctate SNAT2-eGFP expression that persisted and was more cytoplasmic after differentiation into myotubes. Interestingly, transfected cells were significantly more responsive to the hormone 5α-dihydrotestosterone (DHT, 4.5 nM, by 1.6×, n = 3 per group, P < 0.04). Starvation significantly enhanced the amino acid C14 -MeAIB transport (1.7×, n = 3 per group, P < 0.05) indicating increased function of SNAT2. Inhibiting SNAT2 with high concentrations of MeAIB (3.3 or 5 mM) significantly reduced C14 -Isoleucine transport by L-type amino acid transporter (LAT2, 52.8% and 77%, respectively, n = 3 per group, P < 0.05). However, there was no increase in the LAT2 transport of C14 -isoleucine detectable in SNAT2-eGFP transfected cells after DHT (4.5 nM) exposure. This indicated that small amino acid availability was not rate limiting to LAT2 function in myoblasts. CONCLUSIONS Overall, these data show that transfection of SNAT2-eGFP expression enhanced its function following starvation and treatment with physiological levels of DHT. Enhanced SNAT2 expression in muscle cells offers a viable epigenetic target in pathological conditions associated with altered amino acid transport.
Collapse
Affiliation(s)
- Timothy Pearson
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Oskar Wendowski
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Penny P Powell
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
3
|
Shooli H, Dadgar H, Wáng YXJ, Vafaee MS, Kashuk SR, Nemati R, Jafari E, Nabipour I, Gholamrezanezhad A, Assadi M, Larvie M. An update on PET-based molecular imaging in neuro-oncology: challenges and implementation for a precision medicine approach in cancer care. Quant Imaging Med Surg 2019; 9:1597-1610. [PMID: 31667145 PMCID: PMC6785513 DOI: 10.21037/qims.2019.08.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
PET imaging using novel radiotracers show promises for tumor grading and molecular characterization through visualizing molecular and functional properties of the tumors. Application of PET tracers in brain neoplasm depends on both type of the neoplasm and the research or clinical significance required to be addressed. In clinical neuro-oncology, 18F-FDG is used mainly to differentiate tumor recurrence from radiation-induced necrosis, and novel PET agents show attractive imaging properties. Novel PET tracers can offer biologic information not visible via contrast-enhanced MRI or 18F-FDG PET. This review aims to provide an update on the complementary role of PET imaging in neuro-oncology both in research and clinical settings along with presenting interesting cases in this context.
Collapse
Affiliation(s)
- Hossein Shooli
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Yì-Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Manochehr Seyedi Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Translational Neuroscience, BRIDGE, University of Southern Denmark, Odense, Denmark
- Neuroscience Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Rassaei Kashuk
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Gholamrezanezhad
- Department of Diagnostic Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Sudo H, Tsuji AB, Sugyo A, Okada M, Kato K, Zhang MR, Saga T, Higashi T. Direct comparison of 2‑amino[3‑11C]isobutyric acid and 2‑amino[11C]methyl‑isobutyric acid uptake in eight lung cancer xenograft models. Int J Oncol 2018; 53:2737-2744. [PMID: 30334568 DOI: 10.3892/ijo.2018.4596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/05/2018] [Indexed: 11/06/2022] Open
Abstract
The non‑natural amino acid positron emission tomography tracers, 2‑amino[3‑11C]isobutyric acid ([3‑11C]AIB) and 2‑amino[11C]methyl‑isobutyric acid ([11C]MeAIB), are metabolically stable in vivo and accumulate in tumors. [3‑11C]AIB is transported into cells mainly via the amino acid transport system A and partially via systems L and ASC, whereas [11C]MeAIB is transported into cells specifically via system A. How transport via the different systems affects the tumor uptake of these tracers, however, is unclear. In the present study, the tumor uptake of the two tracers was directly compared in eight lung cancer models (A549, H82, H441, H460, H1299, H1650, PC14, and SY), and the correlation of tumor uptake with several factors (amino acid transporter expression, contribution of amino acid transport systems to AIB uptake and tumor proliferation indices) was analyzed. Biodistribution analyses revealed that the tumor uptake of [3‑11C]AIB (4.9 to 19.2% injected dose per gram [ID/g]) was higher than that of [11C]MeAIB (3.1 to 15.9% ID/g) in all eight tumors, with a statistically significant difference in three tumors (P<0.01 in H441 and H460 tumors, P<0.05 in H82 tumors). A significant correlation was observed between the tumor uptake of the two tracers (r=0.95, P<0.01). The mRNA expression levels of the amino acid transporters of system A (SLC38A1 and SLC38A2), system L (SLC7A5) and system ASC (SLC1A5) were higher in all eight tumors than in the normal lung, with widely varying expression patterns. Although the contributions of the amino acid transport systems, Ki‑67 indices and tumor doubling times greatly differed among the eight models, these factors did not correlate with the tumor uptake of either tracer. The higher tumor uptake of [3‑11C]AIB and the correlation of tumor uptake between [3‑11C]AIB and [11C]MeAIB warrant further investigation in clinical studies in order to clarify the role of [3‑11C]AIB PET in oncology imaging.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| | - Maki Okada
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| | - Koichi Kato
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| | - Tsuneo Saga
- Department of Diagnostic Radiology, Kyoto University Hospital, Kyoto 606‑8507, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST‑NIRS), Chiba 263‑8555, Japan
| |
Collapse
|
5
|
Differential Diagnosis between Low-Grade and High-Grade Astrocytoma Using System A Amino Acid Transport PET Imaging with C-11-MeAIB: A Comparison Study with C-11-Methionine PET Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1292746. [PMID: 30026674 PMCID: PMC6031168 DOI: 10.1155/2018/1292746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/06/2018] [Indexed: 11/29/2022]
Abstract
Introductions [N-methyl-C-11]α-Methylaminoisobutyric acid (MeAIB) is an artificial amino acid radiotracer used for PET study, which is metabolically stable in vivo. In addition, MeAIB is transported by system A neutral amino acid transport, which is observed ubiquitously in all types of mammalian cells. It has already been shown that MeAIB-PET is useful for malignant lymphoma, head and neck cancers, and lung tumors. However, there have been no reports evaluating the usefulness of MeAIB-PET in the diagnosis of brain tumors. The purpose of this study is to investigate the efficacy of system A amino acid transport PET imaging, MeAIB-PET, in clinical brain tumor diagnosis compared to [S-methyl-C-11]-L-methionine (MET)-PET. Methods Thirty-one consecutive patients (male: 16, female: 15), who were suspected of having brain tumors, received both MeAIB-PET and MET-PET within a 2-week interval. All patients were classified into two groups: Group A as a benign group, which included patients who were diagnosed as low-grade astrocytoma, grade II or less, or other low-grade astrocytoma (n=12) and Group B as a malignant group, which included patients who were diagnosed as anaplastic astrocytoma, glioblastoma multiforme (GBM), or recurrent GBM despite prior surgery or chemoradiotherapy (n=19). PET imaging was performed 20 min after the IV injection of MeAIB and MET, respectively. Semiquantitative analyses of MeAIB and MET uptake using SUVmax and tumor-to-contralateral normal brain tissue (T/N) ratio were evaluated to compare these PET images. ROC analyses for the diagnostic accuracy of MeAIB-PET and MET-PET were also calculated. Results In MeAIB-PET imaging, the SUVmax was 1.20 ± 1.29 for the benign group and 2.94 ± 1.22 for the malignant group (p < 0.005), and the T/N ratio was 3.77 ± 2.39 for the benign group and 16.83 ± 2.39 for the malignant group (p < 0.001). In MET-PET, the SUVmax was 3.01 ± 0.94 for the benign group and 4.72 ± 1.61 for the malignant group (p < 0.005), and the T/N ratio was 2.64 ± 1.40 for the benign group and 3.21 ± 1.14 for the malignant group (n.s.). For the analysis using the T/N ratio, there was a significant difference between the benign and malignant groups with MeAIB-PET with p < 0.001. The result of ROC analysis using the T/N ratio indicated a better diagnosis accuracy for MeAIB-PET for brain tumors than MET-PET (p < 0.01). Conclusions MeAIB, a system A amino acid transport-specific radiolabeled agents, could provide better assessments for detecting malignant type brain tumors. In a differential diagnosis between low-grade and high-grade astrocytoma, MeAIB-PET is a useful diagnostic imaging tool, especially in evaluations using the T/N ratio. Clinical trial registration This trial was registered with UMIN000032498.
Collapse
|