1
|
Pronin IN, Postnov AA, Lipengolts AA, Pavlova GV, Revishchin AV, Skribitsky VA, Finogenova YA, Smirnova AV, Shpakova KE, Grigorieva EY, Kozlova YA, Alekseeva AI. [A Novel Rat Glioblastoma 101/8 Model: A Comparative PET-CT Study with C6 Rat model]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:54-62. [PMID: 39670780 DOI: 10.17116/neiro20248806154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of new drugs in nuclear medicine for diagnosis or treatment (chemotherapy) of brain tumors, in particular gliomas, is inextricably linked with the use of tumor models in animals (usually rats). OBJECTIVE To compare the widely used glioma cell model C6 and the new experimental tissue model of glioblastoma 101.8. MATERIAL AND METHODS A comparison was made of the diagnostic and morphological characteristics of the presented glioma models in two groups of animals with intracranially implanted tissue strain of experimental glioblastoma 101.8 (n=4) and the C6 glioma cell line (n=4) throughout the tumor development cycle within the rat brain. To monitor the progress of tumor growth and development, each animal underwent repeated diagnostic studies using PET-CT with 18F-FDG and 18F-FET to assess the metabolic activity and volume of the tumor. Also MRI images were collected. After the end of data acquisition, a histological examination of the tumor was carried out. RESULTS The tissue model of glioblastoma 101.8 demonstrated rapid growth and pronounced accumulation of the tracers in all animals during the tumor observation cycle. Formation of intratumoral necrosis and signs of disruption of the blood-brain barrier (BBB) were detected. In PET-CT studies of animals with a transplanted C6 tumor, no visible necrosis in the tumor structure was observed. Tumor growth was less rapid than in the case of model 101.8. The obtained morphological characteristics of 101.8 tumors transplanted into the rat brain demonstrated similar properties observed in real clinical conditions in patients with glioblastoma of the brain (necrosis, neovascularization, multiple pseudopalisade structures). CONCLUSIONS Tumor model 101.8 can be recommended for scientific research as it most closely reproduces the diagnostic and morphological features of a human glioblastoma.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgical Center, Moscow, Russia
- The Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - A A Lipengolts
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - G V Pavlova
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - A V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - V A Skribitsky
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Yu A Finogenova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A V Smirnova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - K E Shpakova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - E Yu Grigorieva
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Yu A Kozlova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Botkin Hospital, Moscow, Russia
| | - A I Alekseeva
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution «Petrovsky National Research Centre of Surgery», Moscow, Russia
| |
Collapse
|
2
|
Wang C, Lin R, Yao S. Recent Advances in 18F-Labeled Amino Acids Synthesis and Application. Pharmaceutics 2022; 14:pharmaceutics14102207. [PMID: 36297641 PMCID: PMC9609324 DOI: 10.3390/pharmaceutics14102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Radiolabeled amino acids are an important class of agents for positron emission tomography imaging that target amino acid transporters in many tumor types. Traditional 18F-labeled amino acid synthesis strategies are always based on nucleophilic aromatic substitution reactions with multistep radiosynthesis and low radiochemical yields. In recent years, new 18F-labeling methodologies such as metal-catalyzed radiofluorination and heteroatom (B, P, S, Si, etc.)-18F bond formation are being effectively used to synthesize radiopharmaceuticals. This review focuses on recent advances in the synthesis, radiolabeling, and application of a series of 18F-labeled amino acid analogs using new 18F-labeling strategies.
Collapse
|
3
|
Lin L, Xiang X, Su S, Liu S, Xiong Y, Ma H, Yuan G, Nie D, Tang G. Biological Evaluation of [ 18F]AlF-NOTA-NSC-GLU as a Positron Emission Tomography Tracer for Hepatocellular Carcinoma. Front Chem 2021; 9:630452. [PMID: 33937189 PMCID: PMC8085524 DOI: 10.3389/fchem.2021.630452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose: N-(2-[18F]fluoropropionyl)-L-glutamate ([18F]FPGLU) for hepatocellular carcinoma (HCC) imaging has been performed in our previous studies, but its radiosynthesis method and stability in vivo need to be improved. Hence, we evaluated the synthesis and biological properties of a simple [18F]-labeled glutamate analog, [18F]AlF-1,4,7-triazacyclononane-1,4,7-triacetic-acid-2-S-(4-isothiocyanatobenzyl)-l-glutamate ([18F]AlF-NOTA-NSC-GLU), for HCC imaging. Procedures: [18F]AlF-NOTA-NSC-GLU was synthesized via a one-step reaction sequence from NOTA-NSC-GLU. In order to investigate the imaging value of [18F]AlF-NOTA-NSC-GLU in HCC, we conducted positron emission tomography/computed tomography (PET/CT) imaging and competitive binding of [18F]AlF-NOTA-NSC-GLU in human Hep3B tumor-bearing mice. The transport mechanism of [18F]AlF-NOTA-NSC-GLU was determined by competitive inhibition and protein incorporation experiments in vitro. Results: [18F]AlF-NOTA-NSC-GLU was prepared with an overall radiochemical yield of 29.3 ± 5.6% (n = 10) without decay correction within 20 min. In vitro competitive inhibition experiments demonstrated that the Na+-dependent systems XAG-, B0+, ASC, and minor XC- were involved in the uptake of [18F]AlF-NOTA-NSC-GLU, with the Na+-dependent system XAG- possibly playing a more dominant role. Protein incorporation studies of the Hep3B human hepatoma cell line showed almost no protein incorporation. Micro-PET/CT imaging with [18F]AlF-NOTA-NSC-GLU showed good tumor-to-background contrast in Hep3B human hepatoma-bearing mouse models. After [18F]AlF-NOTA-NSC-GLU injection, the tumor-to-liver uptake ratio of [18F]AlF-NOTA-NSC-GLU was 2.06 ± 0.17 at 30 min post-injection. In vivo competitive binding experiments showed that the tumor-to-liver uptake ratio decreased with the addition of inhibitors to block the XAG system. Conclusions: We have successfully synthesized [18F]AlF-NOTA-NSC-GLU as a novel PET tracer with good radiochemical yield and high radiochemical purity. Our findings indicate that [18F]AlF-NOTA-NSC-GLU may be a potential candidate for HCC imaging. Also, a further biological evaluation is underway.
Collapse
Affiliation(s)
- Liping Lin
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianhong Xiang
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Su
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Xiong
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Ma
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gongjun Yuan
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dahong Nie
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Radiotherapy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Department of Radiology Intervention and Medical Imaging, Guangdong Engineering Research Center for Medical Radiopharmaceuticals Translational Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur J Med Chem 2020; 205:112629. [PMID: 32956956 DOI: 10.1016/j.ejmech.2020.112629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 01/12/2023]
Abstract
With the development of positron emission tomography (PET) technology, a variety of PET imaging agents labeled with radionuclide 18F have been developed and widely used in the diagnosis and treatment of various clinical diseases in recent years. For example, they have showed a great value of study in the field of tumor detection, tumor treatment and evaluation of tumor therapy in a non-invasive, qualitative and quantitative way. In this review, we highlight the recent development in chemical synthesis, structure and characterization, imaging characterization, and potential applications of these 18F labeled small molecule PET imaging agents for the past five years. The development and application of 18F labeled small molecules will expand our knowledge of the function and distribution of diseases-related molecular targets and shed light on the diagnosis and treatment of various diseases including tumors.
Collapse
|
5
|
Theodoropoulos AS, Gkiozos I, Kontopyrgias G, Charpidou A, Kotteas E, Kyrgias G, Tolia M. Modern radiopharmaceuticals for lung cancer imaging with positron emission tomography/computed tomography scan: A systematic review. SAGE Open Med 2020; 8:2050312120961594. [PMID: 33062275 PMCID: PMC7534078 DOI: 10.1177/2050312120961594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: In this study, we evaluated the use and the contribution of radiopharmaceuticals to the field of lung neoplasms imaging using positron emission tomography/computed tomography. Methods: We conducted review of the current literature at PubMed/MEDLINE until February 2020. The search language was English. Results: The most widely used radiopharmaceuticals are the following: Experimental/pre-clinical approaches: (18)F-Misonidazole (18F-MISO) under clinical development, D(18)F-Fluoro-Methyl-Tyrosine (18F-FMT), 18F-FAMT (L-[3-18F] (18)F-Fluorothymidine (18F-FLT)), (18)F-Fluoro-Azomycin-Arabinoside (18F-FAZA), (68)Ga-Neomannosylated-Human-Serum-Albumin (68Ga-MSA) (23), (68)Ga-Tetraazacyclododecane (68Ga-DOTA) (as theranostic agent), (11)C-Methionine (11C-MET), 18F-FPDOPA, ανβ3 integrin, 68Ga-RGD2, 64Cu-DOTA-RGD, 18F-Alfatide, Folate Radio tracers, and immuno-positron emission tomography radiopharmaceutical agents. Clinically approved procedures/radiopharmaceuticals agents: (18)F-Fluoro-Deoxy-Glucose (18F-FDG), (18)F-sodium fluoride (18F-NaF) (bone metastases), and (68)Ga-Tetraazacyclododecane (68Ga-DOTA). The quantitative determination and the change in radiopharmaceutical uptake parameters such as standard uptake value, metabolic tumor volume, total lesion glycolysis, FAZA tumor to muscle ratio, standard uptake value tumor to liver ratio, standard uptake value tumor to spleen ratio, standard uptake value maximum ratio, and the degree of hypoxia have prognostic and predictive (concerning the therapeutic outcome) value. They have been associated with the assessment of overall survival and disease free survival. With the positron emission tomography/computed tomography radiopharmaceuticals, the sensitivity and the specificity of the method have increased. Conclusion: In terms of lung cancer, positron emission tomography/computed tomography may have clinical application and utility (a) in personalizing treatment, (b) as a biomarker for the estimation of overall survival, disease free survival, and (c) apply a cost-effective patient approach because it reveals focuses of the disease, which are not found with the other imaging methods.
Collapse
Affiliation(s)
- Athanasios S Theodoropoulos
- Third Department of Medicine, Oncology Unit, School of Medicine, Sotiria General Hospital, University of Athens, Athens, Greece.,Interventional Department of Cardiology-Cardiac Catheterization Laboratory, Thriassio General Hospital of Elefsina, Athens, Greece
| | - Ioannis Gkiozos
- Third Department of Medicine, Oncology Unit, School of Medicine, Sotiria General Hospital, University of Athens, Athens, Greece
| | - Georgios Kontopyrgias
- Third Department of Medicine, Oncology Unit, School of Medicine, Sotiria General Hospital, University of Athens, Athens, Greece
| | - Adrianni Charpidou
- Third Department of Medicine, Oncology Unit, School of Medicine, Sotiria General Hospital, University of Athens, Athens, Greece
| | - Elias Kotteas
- Third Department of Medicine, Oncology Unit, School of Medicine, Sotiria General Hospital, University of Athens, Athens, Greece
| | - George Kyrgias
- Department of Radiotherapy/Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Biopolis, Larisa, Greece
| | - Maria Tolia
- Department of Radiotherapy/Radiation Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Biopolis, Larisa, Greece
| |
Collapse
|
6
|
Wu Z, Ma J, Brownell AL, Wang H, Li C, Meng X, Yuan L, Liu H, Li S, Xie J. Synthesis and evaluation of an N-[ 18F]fluorodeoxyglycosyl amino acid for PET imaging of tumor metabolism. Nucl Med Biol 2018; 66:40-48. [PMID: 30248568 DOI: 10.1016/j.nucmedbio.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The limitations of [18F]fluorodeoxyglucose ([18F]FDG), including producing false-positive or -negative results, low image contrast in brain tumor diagnosis and poor differentiation of tumor and inflammatory, necessitate the development of new radiopharmaceuticals. In the present study, a novel [18F]fluoroglycoconjugate tracer, [18F]FDGly-NH-Phe, for tumor metabolism imaging was prepared and evaluated. METHODS [18F]FDGly-NH-Phe was prepared by condensing [18F]FDG with L-4-aminophenylalanine in an acidic condition, and purified with semi-preparative-high performance liquid chromatography (HPLC). The in vitro stability study was conducted in phosphate-buffered saline (PBS, pH 4.0-9.18) at room temperature (RT) and in fetal bovine serum (FBS) at 37 °C. The preliminary cellular uptake studies were performed using Hep-2 cell. The bio-distribution studies, PET/CT imaging and metabolism studies were performed and compared with [18F]FDG on ICR or BALB/c nude model mice. RESULTS [18F]FDGly-NH-Phe was derived from a direct condensation of [18F]FDG with L-4-aminophenylalanine with high stability in FBS and PBS (pH of 6.5-9.18). In vitro cell experiments showed that [18F]FDGly-NH-Phe uptake in Hep-2 cells was primarily transported through amino acid transporters including Na+-dependent A system, ASC system, and system B0,+ system. The bio-distribution of [18F]FDGly-NH-Phe in normal ICR mice showed faster blood radioactivity clearance, and lower uptake in brain and heart than [18F]FDG. The performance of PET/CT imaging for [18F]FDGly-NH-Phe in the mice model manifested excellent tumor visualization, high tumor-to-background ratios, and low accumulation in inflammatory lesions. Metabolism studies for [18F]FDGly-NH-Phe indicated high in vivo stability in plasma and urine and decomposition into [18F]FDG in the tumor microenvironment. CONCLUSION The results demonstrated that [18F]FDGly-NH-Phe as a novel amino acid PET tracer showed the capability to differentiate tumor from inflammation, and the potentials for future clinical applications.
Collapse
Affiliation(s)
- Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Department of Radiology, Massachusetts General Hospital, Boston, USA; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingxin Ma
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | | | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chaomin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaxia Meng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ling Yuan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Jun Xie
- Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
7
|
Zhang Z, Liu S, Tang X, Nie D, Tang G, Sun A, Xiong Y, Ma H, Wen F, Hu P. Radiosynthesis and preliminary biological evaluation of the 2-[18F]fluoropropionic acid enantiomers for tumor PET imaging. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5753-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|