1
|
Friedel A, Prante O, Maschauer S. Radiosynthesis and Preclinical Evaluation of 18F-Labeled Estradiol Derivatives with Different Lipophilicity for PET Imaging of Breast Cancer. Cancers (Basel) 2024; 16:2639. [PMID: 39123367 PMCID: PMC11311842 DOI: 10.3390/cancers16152639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
About 75% of breast tumors show an overexpression of the estradiol receptor (ER), making it a valuable target for tumor diagnosis and therapy. To date, 16α-[18F]fluoroestradiol (FES) is the only FDA-approved imaging probe for the positron emission tomography (PET) imaging of ER-positive (ER+) breast cancer. However, FES has the drawback of a high retention in the liver. Therefore, the aim of this study was the development and preclinical evaluation of estradiol (E2) derivatives with different lipophilicity. Three 18F-labeled prosthetic groups (two glycosyl and one PEG azide) were chosen for conjugation with ethinyl estradiol (EE) by 18F-CuAAC (Cu-catalyzed azide-alkyne cycloaddition). The cellular uptake in ER+ MCF-7 tumor cells was highest for the less hydrophilic derivative (18F-TA-Glyco-EE). In nude mice bearing different breast tumors (ER+ MCF-7 and T47D versus ER- MDA-MB-231), 18F-TA-Glyco-EE revealed a high uptake in the liver (13%ID/g, 30 min p.i.), which decreased over 90 min to 1.2%ID/g, indicating fast hepatobiliary clearance. The statistically significant difference of 18F-TA-Glyco-EE uptake in T47D compared to MDA-MB-231 tumors at 60-90 min p.i. indicated ER-specific uptake, whereas in vivo PET imaging did not provide evidence for specific uptake of 18F-TA-Glyco-EE in MCF-7 tumors, probably due to ER occupation by E2 after E2-dependent MCF-7 tumor growth in mice. However, in vitro autoradiography revealed a high specific binding of 18F-TA-Glyco-EE to ER+ tumor slices. We conclude that 18F-TA-Glyco-EE, with its increased hydrophilicity after deacetylation in the blood and thus rapid washout from non-target tissues, may be a viable alternative to FES for the PET imaging of breast cancer.
Collapse
Affiliation(s)
- Anna Friedel
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.F.); (O.P.)
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.F.); (O.P.)
- FAU NeW—Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.F.); (O.P.)
| |
Collapse
|
2
|
Zeng X, Liu H, Huang G, Wang Y, Zhou W, Wang Y, Chen X, Cheng X, Zhuang R, Li J, Fang J, Huang L, Zhang X, Guo Z. Development of Preladenant-Based Radiotracers for Imaging A 2AR in Tumors. J Med Chem 2024. [PMID: 39036887 DOI: 10.1021/acs.jmedchem.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Activation of the adenosine 2A receptor (A2AR) can lead to tumor immunosuppression, which results in poor prognosis of immunotherapy. The aim of this study was to design novel 18F-labeled probes ([18F]F-PFP2 and [18F]F-PFP4) to visualize A2AR in the tumor. The uptake of radioprobes in A2AR-negative 4T1 breast tumor was lower than that of A2AR-positive B16F10 melanoma at 1 h p.i. (1.22 ± 0.36% ID/g vs 2.80 ± 0.72% ID/g), 2 h p.i. (1.09 ± 0.20% ID/g vs 2.93 ± 0.76% ID/g) and 3 h p.i. (0.89 ± 0.27% ID/g vs 2.73 ± 0.58% ID/g), respectively. B16F10 lung metastasis models were employed to expand the application scenarios, observing significantly higher uptake of [18F]F-PFP2 in metastatic lesions compared to normal lung tissue (5.55 ± 2.18% ID/g vs 1.89 ± 0.65% ID/g, tumor/lung ratio ∼3). It is given that [18F]F-PFP2 might lay the foundation for establishing an A2AR-targeted imaging evaluation system for tumors, which will provide more precise guidance for personalized treatment.
Collapse
Affiliation(s)
- Xueyuan Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwu Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guolong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yanjie Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wuhao Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yike Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuedong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xingxing Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &, Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Kumar M, Salem K, Jeffery JJ, Fowler AM. PET Imaging of Estrogen Receptors Using 18F-Based Radioligands. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2418:129-151. [PMID: 35119664 DOI: 10.1007/978-1-0716-1920-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vivo molecular imaging of estrogen receptor alpha (ER) can be performed via positron emission tomography (PET) using ER-specific radioligands, such as 16α-[18F]fluoro-17β-estradiol (18F-FES). 18F-FES is a radiopharmaceutical recently approved by the United States Food and Drug Administration for use with PET imaging to detect ER+ lesions in patients with recurrent or metastatic breast cancer as an adjunct to biopsy. 18F-FES PET imaging has been used in clinical studies and preclinical research to assess whole-body ER protein expression and ligand binding function across multiple metastatic sites, to demonstrate inter-tumoral and temporal heterogeneity of ER expression, to quantify the pharmacodynamic effects of ER antagonist treatment, and to predict endocrine therapy response. 18F-FES PET has also been studied for imaging ER in endometrial and ovarian cancer. This chapter details the experimental protocol for 18F-FES PET imaging of ER in preclinical tumor xenograft models. Consistent adherence to key methodologic details will facilitate obtaining meaningful and reproducible 18F-FES PET preclinical imaging results, which could yield additional insight for clinical trials regarding imaging biomarkers and oncologic therapy.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Palo Alto, CA, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Liu H, Lin X, Xu D, Li J, Fang J, Li J, Meng L, Zeng X, Li Y, Huang J, Guo Z, Zhang X. Radioiodinated Ethinylestradiol Derivatives for Estrogen Receptor Targeting Breast Cancer Imaging. ACS Med Chem Lett 2022; 13:203-210. [PMID: 35178176 PMCID: PMC8842134 DOI: 10.1021/acsmedchemlett.1c00559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Two novel PEGylated ethinylestradiol (PEG = poly(ethylene glycol)) estrogen receptor (ER) targeting probes [131I]EITE and [131I]MITE were synthesized and evaluated. Both probes had a nanomolar binding affinity to the ER receptor (36.47 nM for [131I]EITE and 61.83 nM for [131I]MITE). They showed high uptake in ER-positive MCF-7 cells and tumors, which could be significantly blocked by a coinjection of excess estradiol. Their ER specificities were further demonstrated by the low uptake in ER-negative MDA-MB-231 cells and tumors. The maximum tumor-to-muscle (T/M) ratios reach to 6.59 for [131I]EITE at 1 h postinjection (p.i.) and to 3.69 for [131I]MITE at 2 h p.i. in MCF-7 tumors. Among these two probes, [131I]EITE showed a faster tumor accumulation and a higher T/M ratio indicating it could be a better candidate for the potential diagnosis of ER-positive breast cancers.
Collapse
Affiliation(s)
- Huanhuan Liu
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoru Lin
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Duo Xu
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jingchao Li
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Jindian Li
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingxin Meng
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinying Zeng
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China
| | - Yesen Li
- The
First Affiliated Hospital, Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- The
First Affiliated Hospital, Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China,
| | - Xianzhong Zhang
- State
Key Laboratory of Molecular Vaccinology and Molecular Diagnostics
& Center for Molecular Imaging and Translational Medicine, School
of Public Health, Xiamen University, Xiamen 361102, China,
| |
Collapse
|
6
|
Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13215459. [PMID: 34771622 PMCID: PMC8582396 DOI: 10.3390/cancers13215459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Breast cancer is one of the most commonly diagnosed malignant tumors, possessing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer. This review focuses on the most recent developments of novel radiotracers as promising tools for early breast cancer diagnosis. Abstract Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.
Collapse
|
7
|
Xu D, Lin X, Zeng X, Wen X, Li J, Li Y, Huang J, Chen X, Guo Z, Zhang X. Radioiodinated 4-( p-Iodophenyl) Butanoic Acid-Modified Estradiol Derivative for ER Targeting SPECT Imaging. Anal Chem 2021; 93:13998-14006. [PMID: 34612624 DOI: 10.1021/acs.analchem.1c03616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of estrogen receptors (ERs) is one of the important characteristics of most breast cancers. We aim to develop a new type of ER-specific radioiodine-labeled estrogen derivative ([131I]IPBA-EE), which was modified with an albumin-specific ligand 4-(p-iodophenyl) butyric acid (IPBA) to improve the metabolic stability and enhance the ER-targeting ability of estrogen. [131I]IPBA-EE can effectively bind to albumin in vitro, and its dissociation constant (Kd = 0.31 μM) is similar to IPBA (Kd = 0.30 μM). The uptake of [131I]IPBA-EE in ER-positive MCF-7 cells (41.81 ± 3.41%) was significantly higher than that in ER-negative MDA-MB-231 cells (8.78 ± 2.37%, ***P < 0.0005) and could be significantly blocked (3.92 ± 0.35%, ***P < 0.0005). The uptakes of [131I]IPBA-EE in rat uterus and ovaries were 5.66 ± 0.34% ID/g and 5.71 ± 2.77% ID/g, respectively, at 1 h p.i., and these uptakes could be blocked by estradiol (uterus: 2.81 ± 0.41% ID/g, *P < 0.05; ovarian: 3.02 ± 0.08% ID/g, *P < 0.05). SPECT/CT imaging showed that ER-positive MCF-7 tumor uptake of [131I]IPBA-EE reached to 6.07 ± 0.20% ID/g at 7 h p.i., which was significantly higher than that of ER-negative MDA-MB-231 tumor (0.87 ± 0.08% ID/g, **P < 0.005) and could be blocked obviously with fulvestrant (1.65 ± 1.56% ID/g, *P < 0.05). In conclusion, a novel radioiodinated estradiol derivative, [131I]IPBA-EE with albumin-binding property and good metabolic stability, was developed to image the ER in breast cancer. This promising ER-targeted probe has the potential to warrant further preclinical investigations.
Collapse
Affiliation(s)
- Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000 Guangdong Province, China
| | - Xiaoru Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China
| | - Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China
| | - Yesen Li
- The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen 361003, China
| | - Jinxiong Huang
- The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen 361003, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'an South Rd, Xiamen 361102, China
| |
Collapse
|
8
|
Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur J Med Chem 2020; 205:112629. [PMID: 32956956 DOI: 10.1016/j.ejmech.2020.112629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 01/12/2023]
Abstract
With the development of positron emission tomography (PET) technology, a variety of PET imaging agents labeled with radionuclide 18F have been developed and widely used in the diagnosis and treatment of various clinical diseases in recent years. For example, they have showed a great value of study in the field of tumor detection, tumor treatment and evaluation of tumor therapy in a non-invasive, qualitative and quantitative way. In this review, we highlight the recent development in chemical synthesis, structure and characterization, imaging characterization, and potential applications of these 18F labeled small molecule PET imaging agents for the past five years. The development and application of 18F labeled small molecules will expand our knowledge of the function and distribution of diseases-related molecular targets and shed light on the diagnosis and treatment of various diseases including tumors.
Collapse
|
9
|
L’Annunziata MF. Flow-cell radionuclide analysis. HANDBOOK OF RADIOACTIVITY ANALYSIS: VOLUME 2 2020:729-820. [DOI: 10.1016/b978-0-12-814395-7.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Synthesis and biodistribution of 1-[2-(cyclopentadienyltricarbonyltechnetium-99m)-2-oxo-ethoxy-phenyl]-1,2-di- (p-hydroxyphenyl)but-1-ene for tumor imaging. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Gao F, Peng C, Zhuang R, Guo Z, Liu H, Huang L, Li H, Xu D, Wen X, Fang J, Zhang X. 18F-labeled ethisterone derivative for progesterone receptor targeted PET imaging of breast cancer. Nucl Med Biol 2019; 72-73:62-69. [PMID: 31330414 DOI: 10.1016/j.nucmedbio.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE A novel radiolabeled probe 1‑(17‑[18F]fluoro‑3,6,9,12,15‑pentaoxaheptadecyl‑1H‑1,2,3‑triazole testosterone ([18F]FPTT) was synthesized and evaluated for PET imaging of progesterone receptor (PR)-positive breast cancer. METHODS The ethinyl group of ethisterone, a PR targeting pharmacophore, was coupled with azide modified PEG-OTs by click chemistry to obtain the labeling precursor. The final [18F]FPTT was synthesized by a one-step nucleophilic substitution reaction with 18F. The in vitro stabilities of [18F]FPTT in saline or rat serum were determined after 2 h incubation. Then the in vitro cell binding, ex vivo biodistribution and in vivo imaging of [18F]FPTT were further investigated to evaluate the PR targeting ability and feasibility for the diagnosis of PR-positive breast cancer with PET imaging. RESULTS [18F]FPTT was obtained in high decay-corrected radiochemical yield (78 ± 9%) at the end of synthesis. It had high radiochemical purity (>98%) after HPLC purification and good in vitro stability. The molar activity of [18F]FPTT was calculated as 17 GBq/μmol. The microPET imaging of [18F]FPTT in tumor-bearing mice showed much higher tumor uptake in PR-positive MCF-7 tumor (3.9 ± 0.20%ID/g) than that of PR-negative MDA-MB-231 tumor (1.3 ± 0.08%ID/g). The high MCF-7 tumor uptake could be specifically inhibited by blocking with ethisterone (1.3 ± 0.11%ID/g) or [19F]FPTT (2.20 ± 0.17%ID/g), respectively. The biodistribution in estrogen-primed female SD rats of [18F]FPTT showed high uterus and ovary uptakes (8.31 ± 1.74%ID/g and 3.79 ± 0.82%ID/g at 1 h post-injection). The specific uptakes of uterus and ovary in normal rats were 3.52 ± 0.29%ID/g and 3.22 ± 0.50%ID/g respectively and could be inhibited by co-injecting of ethisterone. CONCLUSION A novel [18F]FPTT probe based on ethisterone modification could be a potential diagnostic agent for PR-positive breast cancer.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|