1
|
Lan D, Chen Z, Mu J, Chen H, Zhao Y. Approaches to Radiolabeling Nanobodies for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10265-10275. [PMID: 39904609 DOI: 10.1021/acsami.4c21014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Molecular imaging plays a vital role in diagnosing diseases, monitoring treatments, and evaluating therapeutic efficacy by enabling noninvasive visualization of biological processes. Nanobodies, single-domain antibodies derived from camelids, have emerged as promising candidates for a wide range of biomedical applications due to their unique properties, including small size, high affinity, rapid clearance, and deep-tissue penetration. While effective radiolabeling techniques remain a major challenge to fully realize their clinical potential, this review aims to present recent advances in nanobody radiolabeling, focusing on radionuclides like 64Cu, 68Ga, 89Zr, and 111In, along with their associated chelators and conjugation methods. We highlight the development of innovative chelators, including p-SCN-Bn-HOPO and desferrioxamine derivatives that enhance specificity and stability, as well as advances in conjugation techniques that influence biodistribution and pharmacokinetics. These findings highlight the essential role of nanobody-based molecular imaging for precise diagnostics and targeted therapy.
Collapse
Affiliation(s)
- Deren Lan
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zhulan Chen
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shantou University Medical College, Shantou 515041, China
| | - Jing Mu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haibo Chen
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
2
|
Ismuha RR, Ritawidya R, Daruwati I, Muchtaridi M. Future Prospect of Low-Molecular-Weight Prostate-Specific Membrane Antigen Radioisotopes Labeled as Theranostic Agents for Metastatic Castration-Resistant Prostate Cancer. Molecules 2024; 29:6062. [PMID: 39770150 PMCID: PMC11679579 DOI: 10.3390/molecules29246062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight PSMA inhibitors, with their diverse chemical structures and binding properties, have opened new avenues for research and therapeutic applications in prostate cancer management. These novel agents exhibit enhanced tumor targeting and specificity due to their small size, facilitating rapid uptake and localization at the target site while minimizing the retention in non-target tissues. The primary aim of this study is to evaluate the potential of low-molecular-weight PSMA inhibitors labeled with radioisotopes as theranostic agents for prostate cancer. This includes assessing their efficacy in targeted imaging and therapy and understanding their pharmacokinetic properties and mechanisms of action. This study is a literature review focusing on in vitro and clinical research data. The in vitro studies utilize PSMA-targeted radioligands labeled with radioisotopes to assess their binding affinity, specificity, and internalization in prostate cancer cell lines. Additionally, the clinical studies evaluate the safety, effectiveness, and biodistribution of radiolabeled PSMA ligands in patients with advanced prostate cancer. The findings indicate promising outcomes regarding the safety and efficacy of PSMA-targeted radiopharmaceuticals in clinical settings. The specific accumulation of these agents in prostate tumor lesions suggests their potential for various applications, including imaging and therapy. This research underscores the promise of radiopharmaceuticals targeting PSMA in advancing the diagnosis and treatment of prostate cancer. These agents improve diagnostic accuracy and patients' outcomes by enhancing imaging capabilities and enabling personalized treatment strategies.
Collapse
Affiliation(s)
- Ratu Ralna Ismuha
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmacy, Dharmais Cancer Hospital—National Cancer Center, Jakarta 11420, Indonesia
| | - Rien Ritawidya
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Isti Daruwati
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Wang IE, Brooks AF, Clark M, Morrissette LJ, Scott PJH. Improved purification of cyclotron [ 68Ga]GaCl 3 for the production of 68Ga radiopharmaceuticals. Nucl Med Biol 2024; 130-131:108892. [PMID: 38447298 DOI: 10.1016/j.nucmedbio.2024.108892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Increased demand for NetSpot and Illuccix as requirement to receive the respective Lutathera and Pluvicto radiotherapies, and monitor subsequent response to treatment, have reinforced the need to develop alternative ways of producing gallium-68 (68Ga). Building on our efforts to produce 68Ga in a liquid target on a GE PETtrace, the goal of this work is to modify the current GE Gallium Chloride cassette using the FASTLab 2 synthesis module to produce [68Ga]GaCl3 equivalent to a 1.85 GBq generator and demonstrate compatibility with FDA-approved kits for production of 68Ga-labeled radiopharmaceuticals. METHODS 68Ga was produced in a liquid target via the 68Zn(p,n)68Ga reaction. 68Ga was loaded onto various sizes of ZR resins (ZR Load, 0.3 mL, 1 mL, or 2 mL). The loading efficiency was determined using a dose calibrator. After washing with HNO3, 1.75 M HCl was used to elute the ZR Load resin through various sizes of a second ZR resin (ZR CG, 0 mL, 2 mL, 4 mL). Using 0.5 mL fractions, the elution profile was determined. Compatibility of the [68Ga]GaCl3 with NetSpot and Illuccix kits was investigated. Radiochemical purity (RCP) and 4 h stability were determined using radioTLC and radioHPLC. Using a modified [68Ga]GaCl3 cassette and new FASTLab program, 6 validation preparations were conducted using NetSpot and Illuccix kits for which RCP, stability, sterility and suitability were determined. Dual irradiation of 2 liquid targets was also performed, which was used to simultaneously prepare 1 NetSpot and 2 Illuccix kits by diluting the required activity with 0.1 M HCl. RESULTS The commercially available GE Cassette gave low RCP using commercial FDA kits. To optimize this, the loading efficiency onto ZR Load and the ratio of ZR resin used to load the initial activity and subsequent elution were explored. When using a 2:4 ratio of ZR Load to ZR CG, 97.89 % RCP was observed when a 3.8 mL [68Ga]GaCl3 solution was used. For Dotatate validation, 0.55 mL of buffer was added to 4.2 mL of [68Ga]GaCl3 which gave 1.35 GBq of formulated product. For Illuccix validation, [68Ga]GaCl3 was added to 2.5 mL of buffer which gave 1.52 GBq of [68Ga]Ga-PSMA-11. Formulated products passed package insert quality control (QC) requirements. When dual target irradiations were performed, 2.84 GBq was delivered to an external vial and used to label 1 NetSpot and 2 Illuccix kits simultaneously, and each kit also met or exceeded established QC criteria. CONCLUSION Methods are reported for using cyclotron-produced 68Ga from a liquid target in conjunction with FDA-approved NetSpot and Illucix kits. By employing a 2 mL ZR Load resin with a 4 mL ZR CG resin, adequate resolution between residual 68Zn and desired 68Ga was achieved. By modifying the FASTLab procedure to retain the final 2.5 mL of eluate from the ZR CG resin, [68Ga]GaCl3 equivalent to a new 1.85 GBq generator was obtained. This was suitable for labeling NetSpot and Illucix kits, resulting in high incorporation of 68Ga (RCP >95 %), which has not previously been demonstrated. Delivering [68Ga]GaCl3 into an external vial and diluting with 0.1 M HCl makes it possible to prepare multiple kits simultaneously. These new procedures should facilitate use of cyclotron-produced [68Ga]GaCl3 for clinical production going.
Collapse
Affiliation(s)
- Ivan E Wang
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1301 Catherine St. 2276 Medical Science I, Ann Arbor, MI 48109, United States of America
| | - Allen F Brooks
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1301 Catherine St. 2276 Medical Science I, Ann Arbor, MI 48109, United States of America
| | - Mara Clark
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1301 Catherine St. 2276 Medical Science I, Ann Arbor, MI 48109, United States of America
| | - Luke J Morrissette
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1301 Catherine St. 2276 Medical Science I, Ann Arbor, MI 48109, United States of America
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, 1301 Catherine St. 2276 Medical Science I, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
4
|
Ioppolo JA, Alvarez de Eulate E, Cullen DR, Mohamed S, Morandeau L. Development of a high-performance liquid chromatography method for rapid radiochemical purity measurement of [ 18 F]PSMA-1007, a PET radiopharmaceutical for detection of prostate cancer. J Labelled Comp Radiopharm 2023; 66:58-72. [PMID: 36649714 DOI: 10.1002/jlcr.4013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Since first becoming commercially available in 2018, the PET radiopharmaceutical [18 F]PSMA-1007 has been used widely for the diagnosis and staging of prostate cancer. A pharmacopoeia monograph first became available in 2021, prescribing a radiochemical purity specification of >91%, based on analytical results from both TLC (for [18 F]fluoride impurity alone) and HPLC (for all other 18 F-impurities). Though this monograph has provided clarity for the quality control testing of [18 F]PSMA-1007, it prescribes a HPLC method using phosphate buffer mobile phase that may present a risk of precipitation of phosphate salts in the HPLC system. The method also requires specialised hardware not immediately available to all laboratories. This work describes the development of a simple, rapid reversed-phase HPLC method utilising 0.1 M ammonium formate mobile phase for the accurate assessment of both [18 F]fluoride impurity and overall radiochemical purity in a single test. This method is especially useful for assessment of product stability over time. A more accurate TLC method for [18 F]fluoride impurity is also described.
Collapse
Affiliation(s)
- Joseph A Ioppolo
- Radiopharmaceutical Production and Development Centre (RAPID), Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
- National Imaging Facility, Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, Western Australia, Australia
| | - Eva Alvarez de Eulate
- Radiopharmaceutical Production and Development Centre (RAPID), Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Danica R Cullen
- Radiopharmaceutical Production and Development Centre (RAPID), Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Shifaza Mohamed
- Radiopharmaceutical Production and Development Centre (RAPID), Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Laurence Morandeau
- Radiopharmaceutical Production and Development Centre (RAPID), Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Tremblay S, Beaudoin JF, Bélissant Benesty O, Ait-Mohand S, Dumulon-Perreault V, Rousseau É, Turcotte ÉE, Guérin B. 68Ga-DOTATATE Prepared from Cyclotron-Produced 68Ga: An Integrated Solution from Cyclotron Vault to Safety Assessment and Diagnostic Efficacy in Neuroendocrine Cancer Patients. J Nucl Med 2023; 64:232-238. [PMID: 35906092 PMCID: PMC9902856 DOI: 10.2967/jnumed.121.263768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclotron production of 68Ga is a promising approach to supply 68Ga radiopharmaceuticals. To validate this capability, an integrated solution for a robust synthesis of 68Ga-DOTATATE prepared from cyclotron-produced 68Ga was achieved. A retrospective comparison analysis was performed on patients who underwent PET/CT imaging after injection of DOTATATE labeled with 68Ga produced by a cyclotron or eluted from a generator to demonstrate the clinical safety and diagnostic efficacy of the radiopharmaceutical as a routine standard-of-care diagnostic tool in the clinic. Methods: An enriched pressed 68Zn target was irradiated by a cyclotron with a proton beam set at 12.7 MeV for 100 min. The fully automated process uses an in-vault dissolution system in which a liquid distribution system transfers the dissolved target to a dedicated hot cell for the purification of 68GaCl3 and radiolabeling of DOTATATE using a cassette-based automated module. Quality control tests were performed on the resulting tracer solution. The internal radiation dose for 68Ga-DOTATATE was based on extrapolation from rat biodistribution experiments. A retrospective comparison analysis was performed on patients who underwent PET/CT imaging after injection of DOTATATE labeled with cyclotron- or generator-produced 68Ga. Results: The synthesis of 68Ga-DOTATATE (20.7 ± 1.3 GBq) with high apparent molar activity (518 ± 32 GBq/μmol at the end of synthesis) was completed in 65 min, and the radiopharmaceutical met the requirements specified in the European Pharmacopoeia monograph on 68Ga-chloride (accelerator-produced) solution for radiolabeling. 68Ga-DOTATATE was stable for at least 5 h after formulation. The dosimetry calculated with OLINDA for cyclotron- and generator-produced 68Ga-DOTATATE was roughly equivalent. The SUVmean or SUVmax of tumoral lesions with cyclotron-produced 68Ga-DOTATATE was equivalent to that with generator-produced 68Ga. Among physiologic uptake levels, a significant difference was found in kidneys, spleen, and stomach wall, with lower values in cyclotron-produced 68Ga-DOTATATE in all cases. Conclusion: Integrated cyclotron production achieves reliable high yields of clinical-grade 68Ga-DOTATATE. The clinical safety and imaging efficacy of cyclotron-produced 68Ga-DOTATATE in humans provide supporting evidence for its use in routine clinical practice.
Collapse
Affiliation(s)
- Sébastien Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | | | - Ophélie Bélissant Benesty
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and,Sherbrooke Molecular Imaging Center of the CRCHUS, Sherbrooke, Quebec, Canada
| | - Samia Ait-Mohand
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | | | - Étienne Rousseau
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and,Sherbrooke Molecular Imaging Center of the CRCHUS, Sherbrooke, Quebec, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and,Sherbrooke Molecular Imaging Center of the CRCHUS, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and .,Sherbrooke Molecular Imaging Center of the CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Martinez J, Subramanian K, Huicochea Castellanos S, Thomas C, Choudhury AR, Muench B, Tagawa ST, Pillarsetty NVK, Osborne JR. Cyclotron vs generator-produced 68Ga PSMA: a single-institution, prospective clinical trial. Transl Oncol 2023; 28:101593. [PMID: 36571987 PMCID: PMC9803810 DOI: 10.1016/j.tranon.2022.101593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical utility of gallium 68 (68Ga)-PSMA PET for the diagnosis and management of prostate cancer is driven in part by radioisotope availability and production costs. This study evaluates the equivalence between the two manufacturing processes for 68Ga-PSMA: 68Ga-PSMA-cyclotron (from a solid target) and 68Ga-PSMA-generator. A prospective, single-arm, single-institution non-randomized study was conducted where 16 patients with prostate adenocarcinoma underwent PET/CTs consecutively within 12 to 48 hours with each type of manufactured 68Ga-PSMA between December 2020 and June 2021. The intraclass correlation coefficients suggested acceptable reliability in all lesion parameters (ICC > 0.70). Bland-Altman analysis demonstrated acceptable bias levels for all lesion parameters. Thereby 68Ga-cyclotron (solid target) and 68Ga-generator production methods tagged to the same PSMA ligand resulted in scans which were deemed to be equivalent in detecting PSMA+ lesions in our study. As cyclotron-produced, solid- target 68Ga can be made in large (Ci) quantities, it is a promising tool for future application in 68Ga-PSMA PET scans with the potential to decrease radiotracer production costs and increase isotope availability.
Collapse
Affiliation(s)
- Juana Martinez
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY.
| | - Kritika Subramanian
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | | | - Charlene Thomas
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Arindam Roy Choudhury
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Brett Muench
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Scott T Tagawa
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Joseph R Osborne
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
7
|
Cyclotron Production of Gallium-68 Radiopharmaceuticals Using the 68Zn(p,n) 68Ga Reaction and Their Regulatory Aspects. Pharmaceutics 2022; 15:pharmaceutics15010070. [PMID: 36678699 PMCID: PMC9867404 DOI: 10.3390/pharmaceutics15010070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for 68Ga radiopharmaceuticals, the use of medical cyclotrons is currently being explored. The resulting 68Ga production is several times higher than obtained from a generator. Moreover, the use of solid targets yields end of purification and end of synthesis (EOS) of up to 194 GBq and 72 GBq, respectively. Furthermore, experiments employing liquid targets have provided promising results, with an EOS of 3 GBq for [68Ga]Ga-PSMA-11. However, some processes can be further optimized, specifically purification, to achieve high 68Ga recovery and apparent molar activity. In the future, 68Ga will probably remain one of the most in-demand radionuclides; however, careful consideration is needed regarding how to reduce the production costs. Thus, this review aimed to discuss the production of 68Ga radiopharmaceuticals using Advanced Cyclotron Systems, Inc. (ACSI, Richmond, BC, Canada) Richmond, Canada and GE Healthcare, Wisconsin, USA cyclotrons, its related factors, and regulatory concerns.
Collapse
|
8
|
Isolan L, Malinconico M, Tieu W, Hollis C, Testa M, Melandri M, Brunetti A, Sumini M. A digital twin for 64Cu production with cyclotron and solid target system. Sci Rep 2022; 12:19379. [DOI: 10.1038/s41598-022-23048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractOne method for finding reliable and cost-effective solutions for designing radioisotope production systems is represented by the “digital twin” philosophy of design. Looking at cyclotron solid targets, uncertainties of the particle beam, material composition and geometry play a crucial role in determining the results. The difference between what has been designed and what can be effectively manufactured, where processes such as electroplating are poorly controllable and generate large non-uniformities in deposition, must also be considered. A digital twin, where the target geometry is 3D scanned from real models, can represent a good compromise for connecting “ideal” and “real” worlds. Looking at the 64Ni(p,n)64Cu reaction, different Unstructured-Mesh MCNP6 models have been built starting from the 3D solid target system designed and put into operation by COMECER. A characterization has been performed considering the designed ideal target and a 3D scan of a real manufactured target measured with a ZEISS contact probe. Libraries and physics models have been also tested due to limited cross-section data. Proton spectra in the target volume, 3D proton-neutron-photon flux maps, average energies, power to be dissipated, shut-down dose-rate, 64Cu yield compared with various sources of experimental data and beam axial shifting impact, have been estimated. A digital twin of the 64Ni(p,n)64Cu production device has been characterized, considering the real measured target geometry, paving the way for a fully integrated model suitable also for thermal, structural or fluid-dynamic analyses.
Collapse
|
9
|
Nelson BJB, Andersson JD, Wuest F, Spreckelmeyer S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm Chem 2022; 7:27. [PMID: 36271969 PMCID: PMC9588110 DOI: 10.1186/s41181-022-00180-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background The radiometal gallium-68 (68Ga) is increasingly used in diagnostic positron emission tomography (PET), with 68Ga-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional 99mTc agents. In precision medicine, PET applications of 68Ga are widespread, with 68Ga radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin. Main body These 68Ga radiopharmaceuticals include agents such as [68Ga]Ga-macroaggregated albumin for myocardial perfusion evaluation, [68Ga]Ga-PLED for assessing renal function, [68Ga]Ga-t-butyl-HBED for assessing liver function, and [68Ga]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (68Ge) generators and cyclotron production routes strongly positions 68Ga for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the 68Ga radiopharmaceutical community, and recommendations for centers interested in establishing 68Ga radiopharmaceutical production. Conclusion This review outlines important aspects of 68Ga radiopharmacy, including 68Ga production routes using a 68Ge/68Ga generator or medical cyclotron, standardized 68Ga radiolabeling methods, quality control procedures for clinical 68Ga radiopharmaceuticals, and suggested best practices for centers with established or upcoming 68Ga radiopharmaceutical production. Finally, an outlook on 68Ga radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Jan D Andersson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.,Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
10
|
Analysis of Pros and Cons in Using [ 68Ga]Ga-PSMA-11 and [ 18F]PSMA-1007: Production, Costs, and PET/CT Applications in Patients with Prostate Cancer. Molecules 2022; 27:molecules27123862. [PMID: 35744985 PMCID: PMC9227284 DOI: 10.3390/molecules27123862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this work is to compare [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT as imaging agents in patients with prostate cancer (PCa). Comparisons were made by evaluating times and costs of the radiolabeling process, imaging features including pharmacokinetics, and impact on patient management. The analysis of advantages and drawbacks of both radioligands might help to make a better choice based on firm data. For [68Ga]Ga-PSMA-11, the radiochemical yield (RCY) using a low starting activity (L, average activity of 596.55 ± 37.97 MBq) was of 80.98 ± 0.05%, while using a high one (H, average activity of 1436.27 ± 68.68 MBq), the RCY was 71.48 ± 0.04%. Thus, increased starting activities of [68Ga]-chloride negatively influenced the RCY. A similar scenario occurred for [18F]PSMA-1007. The rate of detection of PCa lesions by Positron Emission Tomography/Computed Tomography (PET/CT) was similar for both radioligands, while their distribution in normal organs significantly differed. Furthermore, similar patterns of biodistribution were found among [18F]PSMA-1007, [68Ga]Ga-PSMA-11, and [177Lu]Lu-PSMA-617, the most used agent for RLT. Moreover, the analysis of economical aspects for each single batch of production corrected for the number of allowed PET/CT examinations suggested major advantages of [18F]PSMA-1007 compared with [68Ga]Ga-PSMA-11. Data from this study should support the proper choice in the selection of the PSMA PET radioligand to use on the basis of the cases to study.
Collapse
|
11
|
Sugo Y, Miyachi R, Obata S, Maruyama YH, Manabe H, Mori M, Ishioka NS, Toda K, Ohira SI. Rapid Flow-Based System for Separation of Radioactive Metals by Selective Complex Formation. Anal Chem 2021; 93:17069-17075. [PMID: 34910462 DOI: 10.1021/acs.analchem.1c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Short-lived radioactive metals are important tracers in clinical diagnosis. Radioactive metals for clinical use are produced from suitable target metals in cyclotrons. The trace amount of radioactive metal produced is contained in a relatively large amount of target metal. A rapid and effective method is required to isolate the radioactive metal. In the present study, selective complex formation followed by cation-exchange adsorption was performed in a continuous flow-based system. Ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) was selected as the ligand after simulation of the separation of radioactive Ga from the target (Zn). Selectively, the Ga-EDTA complex passed through the cation trap, while Zn2+ was trapped. This separation principle is opposite to that of typical solid-phase extraction, which captures the target ion. The proposed separation was performed in a flow-based system with a parallel, open-channel ion trap. The performance was optimized by altering the channel dimensions, channel-filling mesh, and flow rate. Finally, the target radioactive metal, Ga, was selectively and effectively (>99%) separated from a mixture of 50 fg Ga/L and 100 mg Zn/L. The concentration of Zn remaining in the Ga solution was 2.3 μg/L. The complexed Ga was converted to free Ga3+ by a simple UV irradiation method. The proposed method effectively and rapidly separates trace amounts of radioactive metals contained in larger amounts of target metals using a simple flow system that can be operated on site.
Collapse
Affiliation(s)
- Yumi Sugo
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki 370-1292, Japan
| | - Ryoma Miyachi
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Syohei Obata
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Yo-Hei Maruyama
- Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Hinako Manabe
- Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Masanobu Mori
- Faculty of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Noriko S Ishioka
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki 370-1292, Japan
| | - Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
12
|
Demystifying solid targets: Simple and rapid distribution-scale production of [ 68Ga]GaCl 3 and [ 68Ga]Ga-PSMA-11. Nucl Med Biol 2021; 104-105:1-10. [PMID: 34763197 DOI: 10.1016/j.nucmedbio.2021.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/17/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND As the demand for 68Ga continues to grow, there is increasing interest in single-to-multi-Curie production quantities of both [68Ga]GaCl3 and tracers such as [68Ga]Ga-PSMA-11. While such quantities are possible with solid targets, this implementation is often challenging as it typically requires significant site expertise for solid target processing and careful operator-dependent synchronization of multiple independent time-sensitive chemistry steps. Herein we focus on a fully automated solid target production and purification process whereby we avoid the need for tongs/tele-pliers, and have simplified the chemistry by implementing a single sequence (i.e. "time-list") to execute cassette-based dissolution, purification, and labeling. METHODS Electroplated 68Zn was irradiated in a PETtrace prototype automated solid target system. Following irradiation, and using a single FASTlab time-list, the 68Zn was automatically dissolved with HCl/H2O2 and purified as [68Ga]GaCl3 using a combination of resins (ZR/TK400, A8, TK200: Triskem). For select experiments, [68Ga]Ga-PSMA-11 was also produced on the same cassette/single time-list (N = 4), or, by kit labeling (N = 1). Efforts focused towards on-cassette production of [68Ga]GaCl3 strived to maximize activity and quality, whereas efforts focused towards on-cassette production of [68Ga]Ga-PSMA-11 aimed at limiting the entire production cycle to 1 h including the irradiation time (i.e. start-of-bombardment ➔ end-of-synthesis [EOS]). RESULTS For the high activity triplicate [68Ga]GaCl3 productions (i.e. 80 μA, 102 min, 216 ± 10 mg), [68Ga]GaCl3 was purified (end-of-bombardment ➔ end-of-purification [EOP]) in ~28 min with activity yields of 181 ± 8 GBq at EOP and average radiochemical yields of 66 ± 5%. Average AMAs of 2.26 ± 0.16 TBq/μmol using DOTA (N = 3) and 12.00 TBq/μmol using HBED (PSMA-11) (N = 1) at EOP were measured. For the single kit test, (80 μA, 120 min, 263 mg 68Zn) for which 18 mg ascorbic acid was added to the buffer, 199 GBq of [68Ga]Ga-PSMA-11 was successfully produced (thin layer chromatography-based radiochemical purity >99% at 6 h EOS). Finally, for efforts focused at expedient [68Ga]Ga-PSMA-11, up to 42 GBq [68Ga]Ga-PSMA-11 with a radiochemical yield of 51.2% was produced in 63 min, including beamtime, using 220 mg of 68Zn as target material. CONCLUSION With the goal of simplifying solid target production and purification efforts, automated methods using single-use, cassette-based approaches for rapid, large-scale, single time-list production of [68Ga]GaCl3 and [68Ga]Ga-PSMA-11 were developed. These methods were simple to execute and yielded high quality multi-Curie levels of both [68Ga]GaCl3 and [68Ga]Ga-PSMA-11.
Collapse
|
13
|
Kumar D, Mathur A, Prashant V, Mirapurkar S, Das S, Kumar S, Murhekar VV. Regular production and supply of ready-to-use gallium-68 radiopharmaceuticals: centralized radiopharmacy concept with supply experience of 300 doses. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07921-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Clinically Applicable Cyclotron-Produced Gallium-68 Gives High-Yield Radiolabeling of DOTA-Based Tracers. Biomolecules 2021; 11:biom11081118. [PMID: 34439784 PMCID: PMC8393313 DOI: 10.3390/biom11081118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
By using solid targets in medical cyclotrons, it is possible to produce large amounts of 68GaCl3. Purification of Ga3+ from metal ion impurities is a critical step, as these metals compete with Ga3+ in the complexation with different chelators, which negatively affects the radiolabeling yields. In this work, we significantly lowered the level of iron (Fe) impurities by adding ascorbate in the purification, and the resulting 68GaCl3 could be utilized for high-yield radiolabeling of clinically relevant DOTA-based tracers. 68GaCl3 was cyclotron-produced and purified with ascorbate added in the wash solutions through the UTEVA resins. The 68Ga eluate was analyzed for radionuclidic purity (RNP) by gamma spectroscopy, metal content by ICP-MS, and by titrations with the chelators DOTA, NOTA, and HBED. The 68GaCl3 eluate was utilized for GMP-radiolabeling of the DOTA-based tracers DOTATOC and FAPI-46 using an automated synthesis module. DOTA chelator titrations gave an apparent molar activity (AMA) of 491 ± 204 GBq/µmol. GMP-compliant syntheses yielded up to 7 GBq/batch [68Ga]Ga-DOTATOC and [68Ga]Ga-FAPI-46 (radiochemical yield, RCY ~ 60%, corresponding to ten times higher compared to generator-based productions). Full quality control (QC) of 68Ga-labelled tracers showed radiochemically pure and stable products at least four hours from end-of-synthesis.
Collapse
|
15
|
Gower-Fry L, Kronemann T, Dorian A, Pu Y, Jaworski C, Wängler C, Bartenstein P, Beyer L, Lindner S, Jurkschat K, Wängler B, Bailey JJ, Schirrmacher R. Recent Advances in the Clinical Translation of Silicon Fluoride Acceptor (SiFA) 18F-Radiopharmaceuticals. Pharmaceuticals (Basel) 2021; 14:ph14070701. [PMID: 34358127 PMCID: PMC8309031 DOI: 10.3390/ph14070701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
The incorporation of silicon fluoride acceptor (SiFA) moieties into a variety of molecules, such as peptides, proteins and biologically relevant small molecules, has improved the generation of 18F-radiopharmaceuticals for medical imaging. The efficient isotopic exchange radiofluorination process, in combination with the enhanced [18F]SiFA in vivo stability, make it a suitable strategy for fluorine-18 incorporation. This review will highlight the clinical applicability of [18F]SiFA-labeled compounds and discuss the significant radiotracers currently in clinical use.
Collapse
Affiliation(s)
- Lexi Gower-Fry
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Travis Kronemann
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Andreas Dorian
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Yinglan Pu
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Carolin Jaworski
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (P.B.); (L.B.); (S.L.)
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (P.B.); (L.B.); (S.L.)
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany; (P.B.); (L.B.); (S.L.)
| | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Justin J. Bailey
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (L.G.-F.); (T.K.); (A.D.); (Y.P.); (C.J.); (J.J.B.)
- Correspondence:
| |
Collapse
|
16
|
de Feria Cardet RE, Hofman MS, Segard T, Yim J, Williams S, Francis RJ, Frydenberg M, Lawrentschuk N, Murphy DG, De Abreu Lourenco R. Is Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Imaging Cost-effective in Prostate Cancer: An Analysis Informed by the proPSMA Trial. Eur Urol 2021; 79:413-418. [PMID: 33341285 DOI: 10.1016/j.eururo.2020.11.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Before integrating prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) into routine care, it is important to assess if the benefits justify the differences in resource use. OBJECTIVE To determine the cost-effectiveness of PSMA-PET/CT when compared with conventional imaging. DESIGN, SETTING, AND PARTICIPANTS A cost-effectiveness analysis was developed using data from the proPSMA study. proPSMA included patients with high-risk prostate cancer assigned to conventional imaging or 68Ga-PSMA-11 PET/CT with planned health economics data collected. The cost-effectiveness analysis was conducted from an Australian societal perspective. INTERVENTION 68Ga-PSMA-11 PET/CT compared with conventional imaging (CT and bone scan). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary outcome from proPSMA was diagnostic accuracy (nodal and distant metastases). This informed a decision tree analysis of the cost per accurate diagnosis. RESULTS AND LIMITATIONS The estimated cost per scan for PSMA PET/CT was AUD$1203, which was less than the conventional imaging cost at AUD$1412. PSMA PET/CT was thus dominant, having both better accuracy and a lower cost. This resulted in a cost of AUD$959 saved per additional accurate detection of nodal disease, and AUD$1412 saved for additional accurate detection of distant metastases. The results were most sensitive to variations in the number of men scanned for each 68Ga-PSMA-11 production run. Subsequent research is required to assess the long-term costs and benefits of PSMA PET/CT-directed care. CONCLUSIONS PSMA PET/CT has lower direct comparative costs and greater accuracy compared to conventional imaging for initial staging of men with high-risk prostate cancer. This provides a compelling case for adopting PSMA PET/CT into clinical practice. PATIENT SUMMARY The proPSMA study demonstrated that prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) better detects disease that has spread beyond the prostate compared with conventional imaging. Our analysis shows that PSMA PET/CT is also less costly than conventional imaging for the detection of disease spread. This research was presented at the European Association of Nuclear Medicine Scientific Meeting in October 2020.
Collapse
Affiliation(s)
- Rafael E de Feria Cardet
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - Jackie Yim
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | - Scott Williams
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Australian and New Zealand Urogenital and Prostate Cancer Trials Group, Camperdown, Australia; Department of Medicine, University of Queensland, Brisbane, Australia
| | - Roslyn J Francis
- Sir Charles Gairdner Hospital, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| | - Mark Frydenberg
- Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; Cabrini Institute, Cabrini Health, Malvern, Australia
| | - Nathan Lawrentschuk
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Surgery, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; EJ Whitten Prostate Cancer Research Centre, Epworth Healthcare, Melbourne, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan G Murphy
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
17
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Lindner S, Simmet M, Gildehaus FJ, Jurkschat K, Wängler C, Wängler B, Bartenstein P, Schirrmacher R, Ilhan H. Automated production of [ 18F]SiTATE on a Scintomics GRP™ platform for PET/CT imaging of neuroendocrine tumors. Nucl Med Biol 2020; 88-89:86-95. [PMID: 32828007 DOI: 10.1016/j.nucmedbio.2020.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION [18F]SiTATE (formerly known as [18F]SiFAlin-TATE) was recently introduced as a highly promising imaging agent for the diagnosis of well-differentiated neuroendocrine tumors (NET) using positron emission tomography/computed tomography (PET/CT). A high tumor uptake and excellent image quality, the straightforward labeling approach, as well as the economic and logistic advantages of 18F- over 68Ga-labeled compounds predestinate [18F]SiTATE to become a potential new clinical reference standard. A novel state-of-the-art methodology of automated radiopharmaceutical production is required to establish [18F]SiTATE in clinical routine. This work illustrates the development of a novel synthesis procedure of [18F]SiTATE on an automated synthesis unit (ASU) and the clinical applicability of the tracer in human NET imaging. METHODS A new synthesis protocol was generated for the production of [18F]SiTATE on the Scintomics GRP™ platform for clinical NET imaging. The synthesis was carried out according to common Good Manufacturing Practice (GMP) guidelines including all quality control measurements. To confirm utility, clinical batches (n = 3) were produced and applied to six patients diagnosed with NET. RESULTS [18F]SiTATE was obtained in 54 ± 4% (n = 3) non-decay corrected radiochemical yield (RCY), with a radiochemical purity of 96.3 ± 0.1% and a molar activity (Am) of 472 ± 45 GBq/μmol (n = 3). Quality control measurements always met the local release criteria. All specifications were taken or adapted from the Ph.Eur. regulations. PET/CT imaging with [18F]SiTATE produced on the GRP™ module confirmed the expected high image quality. The in vivo distribution pattern and excellent tumor to non-tumor contrast observed, matched the quality of the manually prepared [18F]SiTATE batches. CONCLUSIONS The automated manufacture of [18F]SiTATE was developed using the Scintomics GRP™ platform. The high quality of the radiotracer matched stringent quality control requirements adhering to common GMP guidelines, and its clinical applicability was confirmed by human PET/CT investigations. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE The automated process for the manufacture of [18F]SiTATE described herein represents an important contribution to make [18F]SiTATE routinely accessible for its use in clinical NET diagnosis.
Collapse
Affiliation(s)
- Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Marcel Simmet
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Klaus Jurkschat
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Ioppolo JA, Nezich RA, Richardson KL, Morandeau L, Leedman PJ, Price RI. Direct in vivo comparison of [18F]PSMA-1007 with [68Ga]Ga-PSMA-11 and [18F]AlF-PSMA-11 in mice bearing PSMA-expressing xenografts. Appl Radiat Isot 2020; 161:109164. [DOI: 10.1016/j.apradiso.2020.109164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
|
20
|
Surti S, Pantel AR, Karp JS. Total Body PET: Why, How, What for? IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:283-292. [PMID: 33134653 PMCID: PMC7595297 DOI: 10.1109/trpms.2020.2985403] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PET instruments are now available with a long axial field-of-view (LAFOV) to enable imaging the total-body, or at least head and torso, simultaneously and without bed translation. This has two major benefits, a dramatic increase in system sensitivity and the ability to measure kinetics with wider axial coverage so as to include multiple organs. This manuscript presents a review of the technology leading up to the introduction of these new instruments, and explains the benefits of a LAFOV PET-CT instrument. To date there are two platforms developed for TB-PET, an outcome of the EXPLORER Consortium of the University of California at Davis (UC Davis) and the University of Pennsylvania (Penn). The uEXPLORER at UC Davis has an AFOV of 194 cm and was developed by United Imaging Healthcare. The PennPET EXPLORER was developed at Penn and is based on the digital detector from Philips Healthcare. This multi-ring system is scalable and has been tested with 3 rings but is now being expanded to 6 rings for 140 cm. Initial human studies with both EXPLORER systems have demonstrated the successful implementation and benefits of LAFOV scanners for both clinical and research applications. Examples of such studies are described in this manuscript.
Collapse
Affiliation(s)
- Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel S Karp
- Departments of Radiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
22
|
Kumar K. The Current Status of the Production and Supply of Gallium-68. Cancer Biother Radiopharm 2020; 35:163-166. [DOI: 10.1089/cbr.2019.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, Department of Radiology, The Wright Center of Innovation in Biomedical Imaging, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Fully automated preparation of 68Ga-PSMA-11 at curie level quantity using cyclotron-produced 68Ga for clinical applications. Appl Radiat Isot 2020; 155:108936. [PMID: 31655351 DOI: 10.1016/j.apradiso.2019.108936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
68Ga-PSMA-11 is currently one of the most investigated PET agents for imaging both recurrent prostate cancer and relevant metastases; however, the production and distribution of 68Ga-PSMA-11 is limited to a supply of only a few daily doses when using a commercially available 68Ge/68Ga generator. 68Ge/68Ga generators deliver only a modest amount of activity, up to 1850 MBq (50 mCi), when new, but it decreases with time. Additionally, the production of 68Ga/68Ge generators has not been able to meet the increasing demand of 68Ga radiotracers. In response to the need for a more economically viable alternative, the focus of this study was to provide a simple and efficient method for producing 68Ga-PSMA-11, using cyclotron-produced 68Ga that is ready for routine clinical practice.
Collapse
|