1
|
Morgat C, Duan H, Dalm S, Hindié E, Günther T, Krause BJ, Kramer V, Cavelier F, Stephens AW, Moran S, Lamb L, Iagaru A. A Vision for Gastrin-Releasing Peptide Receptor Targeting for Imaging and Therapy: Perspective from Academia and Industry. J Nucl Med 2025:jnumed.124.269444. [PMID: 40341094 DOI: 10.2967/jnumed.124.269444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers, including prostate cancer, breast cancer, small cell and non-small cell lung cancer, uterine and ovarian cancer, colon cancer, and gastrointestinal stromal tumors. This makes GRPR a multicancer target for theranostics, that is, molecular imaging and therapy. Here, we explore the current state of GRPR-targeted theranostics from bench to bedside, highlighting the preclinical development of various GRPR-targeting compounds and clinical applications. We review the role of GRPR-targeted molecular imaging for all stages of prostate cancer, breast cancer, and other tumors and provide a quo vadis GRPR. We aimed to offer a comprehensive overview of GRPR-targeted theranostics to inform researchers, clinicians, pharma, and regulators of the potential benefits and emerging opportunities in the pursuit of personalized precision cancer care.
Collapse
Affiliation(s)
- Clément Morgat
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
| | - Heying Duan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | - Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Elif Hindié
- Nuclear Medicine Department, Bordeaux University Hospital, Bordeaux, France
- INCIA, University of Bordeaux, CNRS, EPHE, UMR 5287, Bordeaux, France
- Institut Universitaire de France, Paris, France
| | - Thomas Günther
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California
| | | | - Vasko Kramer
- Nuclear Medicine and PET/CT Center PositronMed, Santiago, Chile
- Positronpharma SA, Santiago, Chile
| | - Florine Cavelier
- Pôle Chime Balard, IBMM, UMR 5247 CNRS, Université Montpellier ENSCM, Montpellier, France
| | | | | | - Laura Lamb
- Clarity Pharmaceuticals Ltd., Sydney, Australia
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, California;
| |
Collapse
|
2
|
Arslan E, Baloğlu MC, Özkan İA, Alçin G, Akgün E, Çermik TF. 18 F-FDG PET/CT Positive and 68 Ga-DOTA-Bombesin PET/CT Negative Focus of Benign Apocrine Metaplasia Mimicking Malignancy. Clin Nucl Med 2025; 50:e300-e302. [PMID: 40025668 DOI: 10.1097/rlu.0000000000005709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/17/2024] [Indexed: 03/04/2025]
Abstract
Gastrin-releasing peptide receptor (GRPR) is a promising agent for imaging and development of theranostic radioligands in estrogen receptor (ER)-positive luminal type breast cancer (BC) and may show expression not only in primary malignant lesions but also in lymph node metastases and distant organ metastases. We would like to present a lesion diagnosed as benign apocrine metaplasia in a 45-year-old woman diagnosed with BC, which was negative in 68 Ga-DOTA-Bombesin PET-CT and false positive in 18 F-FDG PET-CT imaging, within the scope of the ongoing study.
Collapse
Affiliation(s)
- Esra Arslan
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health Sciences
| | - Mehmet Can Baloğlu
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health Sciences
| | - İrem Aylin Özkan
- Department of Pathology, Istanbul Training and Research Hospital, University of Health Sciences
| | - Göksel Alçin
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health Sciences
| | - Elife Akgün
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health Sciences
| | | |
Collapse
|
3
|
Mohseninia N, Eisazadeh R, Mirshahvalad SA, Zamani-Siahkali N, Hörmann AA, Pirich C, Iagaru A, Beheshti M. Diagnostic Value of Gastrin-Releasing Peptide Receptor-Targeted PET Imaging in Oncology: A Systematic Review. Semin Nucl Med 2025:S0001-2998(25)00001-7. [PMID: 39855939 DOI: 10.1053/j.semnuclmed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Gastrin-releasing peptide receptor (GRPR), overexpressed in various cancers, is a promising target for positron emission tomography (PET). This systematic review investigated the diagnostic value of GRPR-targeted PET imaging in oncology. A systematic search was conducted on major medical databases until May 23, 2024. Keywords were modified to include clinical original studies on GRPR-targeted PET in cancer patients. Out of 1624 searched studies initially, 107 were eligible for the full-text review. Overall, data from 38 studies met inclusion criteria, investigating GRPR-targeting radiotracers in breast cancer, prostate cancer, gastrointestinal stromal tumours (GIST) and gliomas (including optic pathway glioma and glioblastoma multiforme). In breast cancer, GRPR-targeted PET effectively detected primary tumours and metastases, particularly in estrogen receptor (ER)-positive patients, and predicted treatment response. In prostate cancer, high sensitivity (up to 88%) and specificity (up to 90%) for detecting primary tumours were observed, providing added value when combined with magnetic resonance imaging (MRI). In biochemical recurrence, sites of prostate cancer were identified even at PSA levels below 0.5ng/dL. Compared with PSMA PET, GRPR-targeted PET showed comparable or superior detection rates. Considering GIST, GRPR-targeted PET imaging proved to be a valuable diagnostic tool, particularly when [18F] FDG PET results were inconclusive. Regarding gliomas, GRPR-targeted PET achieved a 100% detection rate (MRI reference), aiding localization, preoperative planning, and differentiation between recurrence and malignant transformation. GRPR-targeted PET shows promise in improving cancer diagnostics, particularly in ER-positive breast cancer, prostate cancer, and gliomas, and may enhance clinical decision-making.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Roya Eisazadeh
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anton Amadeus Hörmann
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
Al-Ibraheem A, Abdlkadir AS, Shi H, Abdel-Razeq H, Mansour A. PET/CT Assessment of Estrogen Receptor positivity for Breast Cancer using [ 68Ga]Ga-RM2 Bombesin Receptor Antagonist: A Systematic Review and Meta-Analysis. Semin Nucl Med 2024; 54:896-903. [PMID: 39370376 DOI: 10.1053/j.semnuclmed.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
[68Ga]Ga-RM2 is a novel gastrin-releasing peptide receptor antagonist with emerging diagnostic utility in low-grade breast cancer (BC) expressing estrogen receptors (ER). This systematic review and meta-analysis evaluates the current diagnostic utility of [68Ga]Ga-RM2 PET/CT and explores BC tumor uptake metrics in ER-positive BC lesions. A systematic search of PubMed, Scopus, and Web of Science databases was conducted using relevant keywords to extract, screen, and select eligible data for analysis. Out of 182 articles reviewed, only four studies were found eligible for inclusion. Qualitative data analysis was applied to four included papers meeting the eligibility criteria. Various promising utilities were identified, including [68Ga]Ga-RM2's ability to detect ER-positive primary BC lesions, lymph nodes, and distant metastatic lesions. Additionally, recent studies have addressed its potential for assessing therapy response following neoadjuvant chemotherapy. Importantly, [68Ga]Ga-RM2 has demonstrated clinical utility in improving and guiding proper management planning by detecting metastatic lesions that can alter overall staging and treatment strategies. The overall lesion detectability was 93% (95% CI: 87-98%) for ER-positive BC. ER-positive BC lesions showed significantly higher maximum standardized uptake values (SUVmax) compared to ER-negative lesions, with a weighted mean difference (WMD) of 10.6 (95% CI: 8.1-13.2; P < 0.00001). Furthermore, ER-positive BC lesions exhibited statistically significant higher SUVmax compared to normal background breast tissue SUVmean, with an overall WMD of 9.9 (95% CI: 7.5-12.2; P < 0.00001). Further studies utilizing this promising radiotracer should be encouraged, implementing prospective, large-scale designs in the near future.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman 11942, Jordan; Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman 11942, Jordan.
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman 11942, Jordan
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman 11942, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Amman 11942, Jordan
| |
Collapse
|
5
|
Baun C, Olsen BB, Alves CML, Ditzel HJ, Terp M, Hildebrandt MG, Poulsen CA, Gé LG, Gammelsrød VS, Orlova A, Dam JH, Thisgaard H. Gastrin-releasing peptide receptor as theranostic target in estrogen-receptor positive breast cancer: A preclinical study of the theranostic pair [ 55Co]Co- and [ 177Lu]Lu-DOTA-RM26. Nucl Med Biol 2024; 138-139:108961. [PMID: 39357076 DOI: 10.1016/j.nucmedbio.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Patients with advanced metastatic estrogen receptor-positive breast cancer often develop resistance to standard treatments, leading to uncontrolled progression. Thus, innovative therapies are urgently needed. The gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers, including breast cancer, making it an interesting theranostic target. RM26, a GRPR-targeting antagonist, has demonstrated promising in vivo kinetics in prostate cancer models. This study evaluated the theranostic capabilities of [55Co]Co-/[177Lu]Lu-DOTA-RM26 in vitro in estrogen receptor-positive breast cancer cells and assessed the diagnostic potential of [55Co]Co-DOTA-RM26 in vivo in a breast cancer mouse model. METHODS We analyzed the binding specificity of [57Co]Co-/[177Lu]Lu-DOTA-RM26 in T47D breast cancer cells, using [57Co]Co-DOTA-RM26 as a surrogate for [55Co]Co-DOTA-RM26. The therapeutic efficacy of increasing [177Lu]Lu-DOTA-RM26 concentrations was determined via viability assay in vitro. Ex vivo biodistribution of [57Co]Co-DOTA-RM26 (17.2 ± 2.7 kBq, 33 ± 5.2 pmol/mouse) was investigated in 12 mice (n= 4/group) with orthotopic breast cancer tumors. The mice were sacrificed at 4 and 24 h post-injection (pi), including a blocking group (20 nmol of unlabeled [Tyr4]-Bombesin) at 4 h pi. For imaging, two tumor-bearing mice underwent [55Co]Co-DOTA-RM26 PET/CT, 4 and 24 h pi (2.8 ± 0.2 MBq, 167.5 ± 0.5 pmol/mouse), with or without GRPR blocking. RESULTS In vitro studies revealed high, specific binding of [57Co]Co-DOTA-RM26 (43 ± 1 % of total added activity per 106 cells (%IA/106)) and [177Lu]Lu-DOTA-RM26 (37 ± 4 %IA/106). The activity was predominantly localized at the cell surface: 71 ± 3 % and 80 ± 6 % for [57Co]Co-DOTA-RM26 and [177Lu]Lu-DOTA-RM26, respectively. [177Lu]Lu-DOTA-RM26 significantly reduced cell viability at all activity concentrations >0.625 MBq/mL (p < 0.0001), with cell viability below 1 % at concentrations ≥5 MBq/mL. Biodistribution data (n = 12) indicated a high, specific tumor uptake of [57Co]Co-DOTA-RM26, surpassing all other tissues significantly at both time points, 3.7 ± 0.6 % of the injected activity per gram (%IA/g) 4 h pi and 0.98 ± 0.05 %IA/g 24 h pi. The kidneys showed the second-highest uptake (2.0 ± 0.1 %IA/g 4 h pi), followed by the pancreas (1.4 ± 0.4 %IA/g 4 h pi). PET/CT imaging with [55Co]Co-DOTA-RM26 supported the biodistribution data and, distinctly visualized the tumor 24 h pi and showed an improved tumor-to-background compared to the earlier time points. Effective GRPR blocking significantly reduced tumor uptake in the PET images 24 h pi. CONCLUSION These findings suggest that the theranostic pair [55Co]Co-/[177Lu]Lu-DOTA-RM26 holds significant promise as a theranostic agent for estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark.
| | - Birgitte Brinkmann Olsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carla Maria Lourenco Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Mikkel Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | | | - Lorraine Gaenaelle Gé
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Vigga Sand Gammelsrød
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anna Orlova
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Sweden; Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Sweden
| | - Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Baun C, Naghavi-Behzad M, Hildebrandt MG, Gerke O, Thisgaard H. Gastrin-releasing peptide receptor as a theranostic target in breast cancer: a systematic scoping review. Semin Nucl Med 2024; 54:256-269. [PMID: 38342656 DOI: 10.1053/j.semnuclmed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in breast cancer, making it a promising target for both imaging and therapy within a theranostic framework. Various radioligands targeting GRPR have undergone investigation in preclinical and clinical studies related to breast cancer. This systematic scoping review aimed to assess the current evidence on GRPR-targeted radioligands for diagnostic and therapeutic applications in breast cancer. The methodology followed the PRISMA-ScR protocol. The literature search was conducted in September 2023 and encompassed MEDLINE, Embase, Cochrane, and Scopus databases. We included original peer-reviewed studies focused on breast cancer patients or in vivo breast cancer models. Two reviewers performed the study selection process independently. Data were extracted, synthesized, and categorized into preclinical and clinical studies, further subdivided based on radioligand properties. A total of 35 original studies were included in the review, with three of them evaluating therapeutic outcomes. The results indicated that GRPR-radioantagonists are superior to GRPR-agonists, exhibiting preferable in vivo stability, rapid, specific tumor targeting, and enhanced retention. Both preclinical and clinical evaluations demonstrated renal excretion and high uptake in normal GRPR-expressing tissue, primarily the pancreas. A significant positive correlation was observed between GRPR and estrogen-receptor expression. In the clinical setting, GRPR-radioligands effectively detected primary tumors and, to a lesser extent, lymph node metastases. Moreover, GRPR-targeted radioantagonists successfully identified distant metastases originating from various sites in advanced metastatic disease, strongly correlated with positive estrogen receptor expression. Preclinical therapeutic evaluation of GRPR-radioligands labeled with lutetium-177 showed promising tumor responses, and none of the studies reported any observed or measured side effects, indicating a safe profile. In conclusion, the evidence presented in this review indicates a preference for GRPR-targeted antagonists over agonists, owing to their superior kinetics and promising diagnostic potential. Clinical assessments suggested diagnostic value for GRPR-targeted theranostics in breast cancer patients, particularly those with high estrogen receptor expression. Nevertheless, in the therapeutic clinical context, paying attention to the radiation dose administered to the pancreas and kidneys is crucial.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mohammad Naghavi-Behzad
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Balma M, Liberini V, Buschiazzo A, Racca M, Rizzo A, Nicolotti DG, Laudicella R, Quartuccio N, Longo M, Perlo G, Terreno E, Abgral R, William Huellner M, Papaleo A, Deandreis D. The Role of Theragnostics in Breast Cancer: A Systematic Review of the Last 12 Years. Curr Med Imaging 2023; 19:817-831. [PMID: 36797602 DOI: 10.2174/1573405619666230216114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, with high morbidity and mortality. Molecular alterations in breast cancer involve the expression or upregulation of various molecular targets that can be used for diagnostic nuclear medicine imaging and radiopharmaceutical treatment. Theragnostics is based on the binding of radionuclides to molecular targets. These radionuclides can induce a cytotoxic effect on the specific tumor cell (target) or its vicinity, thus allowing a personalized approach to patients with effective treatment and comparably small side effects. AIM This review aims to describe the most promising molecular targets currently under investigation for theragnostics and precision oncology in breast cancer. METHODS A comprehensive literature search of studies on theragnostics in breast cancer was performed in the PubMed, PMC, Scopus, Google Scholar, Embase, Web of Science, and Cochrane library databases, between 2010 and 2022, using the following terms: breast neoplasm*, breast, breast cancer*, theragnostic*, theranostic*, radioligand therap*, RLT, MET, FLT, FMISO, FES, estradiol, trastuzumab, PD-L1, PSMA, FAPI, FACBC, fluciclovine, FAZA, GRPR, DOTATOC, DOTATATE, CXC4, endoglin, gastrin, mucin1, and syndecan1. RESULTS Fifty-three studies were included in the systematic review and summarized in six clinical sections: 1) human epidermal growth factor receptor 2 (HER2); 2) somatostatin receptors (SSTRS); 3) prostate-specific membrane antigen radiotracers (PSMA); 4) fibroblast activation protein-α targeted radiotracers; 5) gastrin-releasing peptide receptor-targeted radiotracers; 6) other radiotracers for theragnostics. CONCLUSION The theragnostic approach will progressively allow better patient selection, and improve the prediction of response and toxicity, avoiding unnecessary and costly treatment.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, Turin, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alessio Rizzo
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù (Palermo), Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico Di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Michelangelo Longo
- Cyclotron Unit, Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giorgia Perlo
- Cyclotron Unit, Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin 2022; 61:247-261. [PMID: 35668669 DOI: 10.1055/a-1759-4189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Addressing molecular targets, that are overexpressed by various tumor entities, using radiolabeled molecules for a combined diagnostic and therapeutic (theranostic) approach is of increasing interest in oncology. The gastrin-releasing peptide receptor (GRPr), which is part of the bombesin family, has shown to be overexpressed in a variety of tumors, therefore, serving as a promising target for those theranostic applications. A large amount of differently radiolabeled bombesin derivatives addressing the GRPr have been evaluated in the preclinical as well as clinical setting showing fast blood clearance and urinary excretion with selective GRPr-binding. Most of the available studies on GRPr-targeted imaging and therapy have evaluated the theranostic approach in prostate and breast cancer applying bombesin derivatives tagged with the predominantly used theranostic pair of 68Ga/177Lu which is the focus of this review.
Collapse
Affiliation(s)
- Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Madlin Potratz
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Martin Heuschkel
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
9
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Gastrin-Releasing Peptide Receptor Antagonist [ 68Ga]RM2 PET/CT for Staging of Pre-Treated, Metastasized Breast Cancer. Cancers (Basel) 2021; 13:cancers13236106. [PMID: 34885214 PMCID: PMC8656859 DOI: 10.3390/cancers13236106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET)/computed tomography (CT) using the gastrin-releasing peptide receptor antagonist [68Ga]RM2 has shown to be a promising imaging method for primary breast cancer (BC) with positive estrogen receptor (ER) status. This study assessed tumor visualization by [68Ga]RM2 PET/CT in patients with pre-treated ER-positive BC and suspected metastases. METHODS This retrospective pilot study included eight female patients with initial ER-positive, pre-treated BC who underwent [68Ga]RM2 PET/CT. Most of these patients (seven out of eight; 88%) were still being treated with or had received endocrine therapy. [68Ga]RM2 PET/CTs were visually analyzed by two nuclear medicine specialists in consensus. Tumor manifestations were rated qualitatively (i.e., RM2-positive or RM2-negative) and quantitatively using the maximum standardized uptake value (SUVmax). SUVmax values were compared between the two subgroups (RM2-positive vs. RM2-negative). RESULTS Strong RM2 binding was found in all metastatic lesions of six patients (75%), whereas tracer uptake in all metastases of two patients (25%) was rated negative. Mean SUVmax of RM2-positive metastases with the highest SUVmax per patient (in lymph node and bone metastases; 15.8 ± 15.1 range: 3.7-47.8) was higher than mean SUVmax of the RM2-negative metastases with the highest SUVmax per patient (in bone metastases; 1.6 ± 0.1, range 1.5-1.7). CONCLUSIONS Our data suggest that RM2 binding is maintained in the majority of patients with advanced disease stage of pre-treated ER-positive BC. Thus, [68Ga]RM2 PET/CT could support treatment decision in these patients, radiotherapy planning in oligometastatic patients or selection of patients for RM2 radioligand therapy. Further studies with larger patient cohorts are warranted to confirm these findings.
Collapse
|