1
|
Lv H, Che T, Tang X, Liu L, Cheng J. Puerarin enhances proliferation and osteoblastic differentiation of human bone marrow stromal cells via a nitric oxide/cyclic guanosine monophosphate signaling pathway. Mol Med Rep 2015; 12:2283-90. [PMID: 25892538 DOI: 10.3892/mmr.2015.3647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Puerarin, a major active isoflavone extracted from the Traditional Chinese Medicine Radix Puerariae, has been studied for its comprehensive biological effects. However, to date, its effect on bone formation and the underlying mechanism of action have not been well investigated. The present study investigated the effect of puerarin on cell proliferation and osteoblastic maturation in cultured human bone marrow stromal cells (hBMSC) in vitro. Puerarin (2.5-100 µM) increased hBMSC growth in a dose-dependent manner, as indicated by an MTT assay, and stimulated osteoblastic maturation as indicated by assessment of alkaline phosphatase (ALP) activity, as well as calcium deposition into the extracellular matrix detected by alizarin red S staining. Furthermore, polymerase chain reaction analysis showed that the expression of osteoblastic markers, including Runt-related transcription factor 2/core-binding factor alpha 1, osterix and osteocalcin, were increased in hBMSCs following incubation with puerarin. Further experiments indicated that puerarin increased the nitric oxide (NO) production and cyclic guanosine monophosphate (cGMP) content in hBMSCs. The effects of puerarin were mimicked by 17β-estrodiol (10(-8) M) and were abolished in the presence of estrogen receptor antagonist ICI182780 (10(-7) M). A NO synthase inhibitor, Nx-nitro-L-arginine methylester (6 x 10(-3) M), significantly attenuated puerarin-induced increases in NO production and cGMP content, in parallel with a reduction of cell proliferation and osteoblastic differentiation as well as the expression of osteoblastic markers. These results suggested that puerarin may prevent osteoporosis by exerting stimulatory effects on bone formation and the NO/cGMP pathway, which has an important role in puerarin-induced hBMSC proliferation and osteoblastic differentiation.
Collapse
Affiliation(s)
- Haihong Lv
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tuanjie Che
- Baiyuan Gene Technology Co. Ltd, Lanzhou, Gansu 730000, P.R. China
| | - Xulei Tang
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lijuan Liu
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianguo Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
3
|
Amri A, Le Clanche S, Thérond P, Bonnefont-Rousselot D, Borderie D, Lai-Kuen R, Chaumeil JC, Sfar S, Charrueau C. Resveratrol self-emulsifying system increases the uptake by endothelial cells and improves protection against oxidative stress-mediated death. Eur J Pharm Biopharm 2014; 86:418-26. [DOI: 10.1016/j.ejpb.2013.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/22/2013] [Indexed: 01/03/2023]
|
4
|
Gencel VB, Benjamin MM, Bahou SN, Khalil RA. Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev Med Chem 2012; 12:149-74. [PMID: 22070687 DOI: 10.2174/138955712798995020] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/05/2011] [Indexed: 01/10/2023]
Abstract
Phytoestrogens are estrogenic compounds of plant origin classified into different groups including isoflavones, lignans, coumestans and stilbenes. Isoflavones such as genistein and daidzein are the most studied and most potent phytoestrogens, and are found mainly in soy based foods. The effects of phytoestrogens are partly mediated via estrogen receptors (ERs): ERα, ERβ and possibly GPER. The interaction of phytoestrogens with ERs is thought to induce both genomic and non-genomic effects in many tissues including the vasculature. Some phytoestrogens such as genistein have additional non-ER-mediated effects involving signaling pathways such as tyrosine kinase. Experimental studies have shown beneficial effects of phytoestrogens on endothelial cells, vascular smooth muscle, and extracellular matrix. Phytoestrogens may also affect other pathophysiologic vascular processes such as lipid profile, angiogenesis, inflammation, tissue damage by reactive oxygen species, and these effects could delay the progression of atherosclerosis. As recent clinical trials showed no vascular benefits or even increased risk of cardiovascular disease (CVD) and CV events with conventional menopausal hormone therapy (MHT), phytoestrogens are being considered as alternatives to pharmacologic MHT. Epidemiological studies in the Far East population suggest that dietary intake of phytoestrogens may contribute to the decreased incidence of postmenopausal CVD and thromboembolic events. Also, the WHO-CARDIAC study supported that consumption of high soybean diet is associated with lower mortalities from coronary artery disease. However, as with estrogen, there has been some discrepancy between the experimental studies demonstrating the vascular benefits of phytoestrogens and the data from clinical trials. This is likely because the phytoestrogens clinical trials have been limited in many aspects including the number of participants enrolled, the clinical end points investigated, and the lack of long-term follow-up. Further investigation of the cellular mechanisms underlying the vascular effects of phytoestrogens and careful evaluation of the epidemiological evidence and clinical trials of their potential vascular benefits would put forward the use of phytoestrogens as an alternative MHT for the relief of menopausal symptoms and amelioration of postmenopausal CVD.
Collapse
Affiliation(s)
- V B Gencel
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
5
|
Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie 2012; 94:269-76. [DOI: 10.1016/j.biochi.2011.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/06/2011] [Indexed: 11/20/2022]
|
6
|
Stratton RC, Squires PE, Green AK. 17Beta-estradiol elevates cGMP and, via plasma membrane recruitment of protein kinase GIalpha, stimulates Ca2+ efflux from rat hepatocytes. J Biol Chem 2010; 285:27201-27212. [PMID: 20566641 DOI: 10.1074/jbc.m110.103630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid non-genomic effects of 17beta-estradiol, the principal circulating estrogen, have been observed in a wide variety of cell types. Here we investigate rapid signaling effects of 17beta-estradiol in rat hepatocytes. We show that, above a threshold concentration of 1 nm, 17beta-estradiol, but not 17alpha-estradiol, stimulates particulate guanylyl cyclase to elevate cGMP, which through activation and plasma membrane recruitment of protein kinase G isoform Ialpha, stimulates plasma membrane Ca(2+)-ATPase-mediated Ca(2+) efflux from rat hepatocytes. These effects are extremely rapid in onset and are mimicked by a membrane-impermeant 17beta-estradiol-BSA conjugate, suggesting that 17beta-estradiol acts at the extracellular face of the plasma membrane. We also show that 17beta-estradiol binds specifically to the intact hepatocyte plasma membrane through an interaction that is competed by an excess of atrial natriuretic peptide but also shows many similarities to the pharmacological characteristics of the putative gamma-adrenergic receptor. We, therefore, propose that the observed rapid signaling effects of 17beta-estradiol are mediated either through the guanylyl cyclase A receptor for atrial natriuretic peptide or through the gamma-adrenergic receptor, which is either itself a transmembrane guanylyl cyclase or activates a transmembrane guanylyl cyclase through cross-talk signaling.
Collapse
Affiliation(s)
- Rebecca C Stratton
- Department of Biological Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Paul E Squires
- Department of Biological Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Anne K Green
- Department of Biological Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
7
|
Sebai H, Hovsépian S, Ristorcelli E, Aouani E, Lombardo D, Fayet G. Resveratrol increases iodide trapping in the rat thyroid cell line FRTL-5. Thyroid 2010; 20:195-203. [PMID: 20151827 DOI: 10.1089/thy.2009.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Resveratrol, a polyphenol found in grapes, exhibits several beneficial health effects by its antioxidant, antiinflammatory, and chemopreventive properties. The aim of the present study was to determine the effect of resveratrol on iodide trapping and efflux as well as its mode of action using FRTL-5 cells, having in mind the pivotal role of the natrium iodide symporter (NIS) in the treatment of differentiated thyroid cancers. METHODS Cells were treated with resveratrol for various times and doses, in the presence or absence of thyrotropin (TSH). Iodide trapping, iodide efflux, rat NIS (rNIS) protein expression, and cyclic AMP (cAMP) production were evaluated. RESULTS Resveratrol increased iodide trapping in a time-dependent (optimal 6 hours) and dose-dependent (100 microM) way in the presence of TSH. It showed an additive effect when concomitantly added with an optimal dose of TSH. Resveratrol (50 microM) increased (threefold) rNIS protein expression. In TSH-deprived cells, resveratrol also provoked an increase in rNIS protein (>3-fold in 6 hours) with an optimum at 40 microM. Resveratrol did not inhibit iodide efflux from FRTL-5 cells. It neither increased intracellular cAMP nor induced the arborization of living cells, two TSH-induced effects. A non-cAMP mode of action is highly suspected. CONCLUSIONS Resveratrol increases iodide trapping in FRTL-5 cells, increasing iodide influx and rNIS protein level even in the absence of TSH. It has an additive effect with TSH. Consequently, resveratrol could be a promising molecule for radioiodide therapy in follicular and papillary differentiated thyroid carcinoma in association with recombinant human TSH.
Collapse
Affiliation(s)
- Hichem Sebai
- INSERM UMR-911 and Research Center in Biological and Oncopharmacological Oncology (CrO2), School of Medicine-Timone, Aix-Marseille University, France
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The polyphenolic phytoalexin resveratrol (RSV) and its analogues have received tremendous attention over the past couple of decades because of a number of reports highlighting their benefits in vitro and in vivo in a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. These studies have underscored the high degree of diversity in terms of the signaling networks and cellular effector mechanisms that are affected by RSV. The activity of RSV has been linked to cell-surface receptors, membrane signaling pathways, intracellular signal-transduction machinery, nuclear receptors, gene transcription, and metabolic pathways. The promise shown by RSV has prompted heightened interest in studies aimed at translating these observations to clinical settings. In this review, we present a comprehensive account of the basic chemistry of RSV, its bioavailability, and its multiple intracellular target proteins and signaling pathways.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.
| | | |
Collapse
|
9
|
Soriano S, Ropero AB, Alonso-Magdalena P, Ripoll C, Quesada I, Gassner B, Kuhn M, Gustafsson JA, Nadal A. Rapid regulation of K(ATP) channel activity by 17{beta}-estradiol in pancreatic {beta}-cells involves the estrogen receptor {beta} and the atrial natriuretic peptide receptor. Mol Endocrinol 2009; 23:1973-82. [PMID: 19855088 DOI: 10.1210/me.2009-0287] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ATP-sensitive potassium (K(ATP)) channel is a key molecule involved in glucose-stimulated insulin secretion. The activity of this channel regulates beta-cell membrane potential, glucose- induced [Ca(2+)](i) signals, and insulin release. In this study, the rapid effect of physiological concentrations of 17beta-estradiol (E2) on K(ATP) channel activity was studied in intact beta-cells by use of the patch-clamp technique. When cells from wild-type (WT) mice were used, 1 nm E2 rapidly reduced K(ATP) channel activity by 60%. The action of E2 on K(ATP) channel was not modified in beta-cells from ERalpha-/- mice, yet it was significantly reduced in cells from ERbeta-/- mice. The effect of E2 was mimicked by the ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). Activation of ERbeta by DPN enhanced glucose-induced Ca(2+) signals and insulin release. Previous evidence indicated that the acute inhibitory effects of E2 on K(ATP) channel activity involve cyclic GMP and cyclic GMP-dependent protein kinase. In this study, we used beta-cells from mice with genetic ablation of the membrane guanylate cyclase A receptor for atrial natriuretic peptide (also called the atrial natriuretic peptide receptor) (GC-A KO mice) to demonstrate the involvement of this membrane receptor in the rapid E2 actions triggered in beta-cells. E2 rapidly inhibited K(ATP) channel activity and enhanced insulin release in islets from WT mice but not in islets from GC-A KO mice. In addition, DPN reduced K(ATP) channel activity in beta-cells from WT mice, but not in beta-cells from GC-A KO mice. This work unveils a new role for ERbeta as an insulinotropic molecule that may have important physiological and pharmacological implications.
Collapse
Affiliation(s)
- Sergi Soriano
- Institute of Bioengineering and CIBERDEM, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Antignac JP, Gaudin-Hirret I, Naegeli H, Cariou R, Elliott C, Le Bizec B. Multi-functional sample preparation procedure for measuring phytoestrogens in milk, cereals, and baby-food by liquid-chromatography tandem mass spectrometry with subsequent determination of their estrogenic activity using transcriptomic assay. Anal Chim Acta 2008; 637:55-63. [PMID: 19286012 DOI: 10.1016/j.aca.2008.11.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/18/2008] [Accepted: 11/21/2008] [Indexed: 12/17/2022]
Abstract
A method dedicated to the determination of a multiple range of phytoestrogens as endocrine disruptor compounds in infant food products was developed, with as double objective the specific measurement of 13 parameters and the evaluation of the estrogenic potency associated to this quantitative profile. A combined enzymatic and acidic chemical hydrolysis followed by a double purification on two successive C(18) and SiOH Solid Phase Extraction cartridges permitted to efficiently purify milk, cereals and baby-food samples while eliminating naturally occurring estrogen hormones. A specific liquid chromatography-tandem mass spectrometric measurement authorised unambiguous identification and quantification of the target compounds. The proposed methodology was fully validated and applied to a set of around 30 real samples, demonstrating the presence of phytoestrogens at levels globally ranging from several microgkg(-1) (ppb) to several tens mgkg(-1) (ppm). The prepared sample extracts were proven to be suitable and compatible with the evaluation of their induced biological transcriptional activity on MCF-7 cell lines. Because permitting to cope with difficult issues such as low-dose and mixture effects, this proposed methodology may appear of particular interest for further exposure assessment studies and hazard characterisation investigations related to this class of endocrine disruptor compounds.
Collapse
Affiliation(s)
- Jean-Philippe Antignac
- Laboratoire d'étude des résidus et contaminants dans les aliments (LABERCA), Ecole Nationale Vétérinaire de Nantes (ENVN), USC INRA 2013, BP 50707, 44307, Nantes, France
| | | | | | | | | | | |
Collapse
|