Mahmoud FF, Haines D, Dashti AA, El-Shazly S, Al-Najjar F. Correlation between heat shock proteins, adiponectin, and T lymphocyte cytokine expression in type 2 diabetics.
Cell Stress Chaperones 2018;
23:955-965. [PMID:
29752628 PMCID:
PMC6111097 DOI:
10.1007/s12192-018-0903-4]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 01/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) features insulin resistance, hyperglycemia, dyslipidemia, overproduction of inflammatory cytokines, and systemic oxidative stress. Here, heat shock proteins Hsp70 and Hsp 90, adiponectin, and heme oxygenase-1 (HO-1, Hsp32) are profiled in peripheral blood mononuclear cells (PBMC) and serum from 25 T2DM patients and 25 healthy control subjects. Cells cultured with phorbol 12-myristate 13-acetate/ionomycin were evaluated by three-color flow cytometry for immunophenotypic biomarkers. Plasma HO-1, Hsp, and adiponectin levels were assayed by enzyme-linked immunosorbent assay (ELISA). Relative to healthy controls, T2DM patients exhibited significantly elevated plasma Hsp70, and representation of T helper immunophenotypes activated to express inflammatory cytokines, including CD4+ IFN-γ+, CD4+ TNF-α+, CD4+ IL-6+, CD4+ IL-1β+ T cells, significantly lower representation of CD4+ IL-10+ T cells, plasma adiponectin and cell-associated HO-1 expression-with no significant differences in plasma Hsp90 between T2DM and healthy controls. Plasma HO-1 and adiponectin in T2DM patients inversely correlated with TNF-α and showed inverse correlation between serum LDL and plasma HO-1. Moreover, TNF-α and Hsp90 in T2DM patients correlated positively with fasting blood glucose (FBG). These results demonstrate correlation between potentially pathogenic T cells, HO-1, and adiponectin, additionally revealing a T helper (Th)1-related character of T2DM immunopathogenesis, suggesting potential for novel T cell-related management strategies for T2DM and related co-morbidities.
Collapse