1
|
Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Macut D, Mladenović D. The Interconnection between Hepatic Insulin Resistance and Metabolic Dysfunction-Associated Steatotic Liver Disease-The Transition from an Adipocentric to Liver-Centric Approach. Curr Issues Mol Biol 2023; 45:9084-9102. [PMID: 37998747 PMCID: PMC10670061 DOI: 10.3390/cimb45110570] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The central mechanism involved in the pathogenesis of MAFLD is insulin resistance with hyperinsulinemia, which stimulates triglyceride synthesis and accumulation in the liver. On the other side, triglyceride and free fatty acid accumulation in hepatocytes promotes insulin resistance via oxidative stress, endoplasmic reticulum stress, lipotoxicity, and the increased secretion of hepatokines. Cytokines and adipokines cause insulin resistance, thus promoting lipolysis in adipose tissue and ectopic fat deposition in the muscles and liver. Free fatty acids along with cytokines and adipokines contribute to insulin resistance in the liver via the activation of numerous signaling pathways. The secretion of hepatokines, hormone-like proteins, primarily by hepatocytes is disturbed and impairs signaling pathways, causing metabolic dysregulation in the liver. ER stress and unfolded protein response play significant roles in insulin resistance aggravation through the activation of apoptosis, inflammatory response, and insulin signaling impairment mediated via IRE1/PERK/ATF6 signaling pathways and the upregulation of SREBP 1c. Circadian rhythm derangement and biological clock desynchronization are related to metabolic disorders, insulin resistance, and NAFLD, suggesting clock genes as a potential target for new therapeutic strategies. This review aims to summarize the mechanisms of hepatic insulin resistance involved in NAFLD development and progression.
Collapse
Affiliation(s)
- Milena Vesković
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Šutulović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Dragan Hrnčić
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Olivera Stanojlović
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.Š.); (D.H.); (O.S.)
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dušan Mladenović
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
3
|
Schreyer E, Obringer C, Messaddeq N, Kieffer B, Zimmet P, Fleming A, Geberhiwot T, Marion V. PATAS, a First-in-Class Therapeutic Peptide Biologic, Improves Whole-Body Insulin Resistance and Associated Comorbidities In Vivo. Diabetes 2022; 71:2034-2047. [PMID: 35822820 DOI: 10.2337/db22-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022]
Abstract
Adipose tissue is a key regulator of whole-body metabolic fitness because of its role in controlling insulin sensitivity. Obesity is associated with hypertrophic adipocytes with impaired glucose absorption, a phenomenon existing in the ultrarare monogenic disorder Alström syndrome consisting of severe insulin resistance. Inactivation of ALMS1 directly inhibits insulin-mediated glucose absorption in the white adipose tissue and induces severe insulin resistance, which leads to type 2 diabetes, accelerated nonalcoholic liver disease, and fibrosis. These phenotypes were reversed by specific adipocyte-ALMS1 reactivation in vivo. Subsequently, ALMS1 was found to bind to protein kinase C-α (PKCα) in the adipocyte, and upon insulin signaling, PKCα is released from ALMS1. α-Helices in the kinase domain of PKCα were therefore screened to identify a peptide sequence that interfered with the ALMS1-PKCα protein interaction. When incubated with cultured human adipocytes, the stapled peptide termed PATAS, for Peptide derived of PKC Alpha Targeting AlmS, triggered insulin-independent glucose absorption, de novo lipogenesis, and cellular glucose utilization. In vivo, PATAS reduced whole-body insulin resistance, and improved glucose intolerance, fasting glucose, liver steatosis, and fibrosis in rodents. Thus, PATAS represents a novel first-in-class peptide that targets the adipocyte to ameliorate insulin resistance and its associated comorbidities.
Collapse
Affiliation(s)
- Edwige Schreyer
- AdipoPharma SAS, Parc d'Innovation, Illkirch-Graffenstaden, France
| | - Cathy Obringer
- INSERM, UMR_U1112, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Nadia Messaddeq
- Institut de Génétique, Biologie Moléculaire et Cellulaire (IGBMC), CNRS, UMR_7104, INSERM, U_1258, Université de Strasbourg, France
| | - Bruno Kieffer
- Institut de Génétique, Biologie Moléculaire et Cellulaire (IGBMC), CNRS, UMR_7104, INSERM, U_1258, Université de Strasbourg, France
| | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Tarekegn Geberhiwot
- Inherited Metabolic Disorders, Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham, U.K
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, U.K
| | - Vincent Marion
- AdipoPharma SAS, Parc d'Innovation, Illkirch-Graffenstaden, France
- INSERM, UMR_U1112, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Guzzardi MA, Guiducci L, Campani D, La Rosa F, Cacciato Insilla A, Bartoli A, Cabiati M, De Sena V, Del Ry S, Burchielli S, Bonino F, Iozzo P. Leptin resistance before and after obesity: evidence that tissue glucose uptake underlies adipocyte enlargement and liver steatosis/steatohepatitis in Zucker rats from early-life stages. Int J Obes (Lond) 2022; 46:50-58. [PMID: 34489524 DOI: 10.1038/s41366-021-00941-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Leptin resistance occurs in obese patients, but its independent contribution to adiposity and the accompanying metabolic diseases, i.e., diabetes, liver steatosis, and steatohepatitis, remains to be established. This study was conducted in an extreme model of leptin resistance to investigate mechanisms initiating diabetes, fat expansion, liver steatosis, and inflammatory disease, focusing on the involvement of glucose intolerance and organ-specific glucose uptake in brown and subcutaneous adipose tissues (BAT, SAT) and in the liver. METHODS We studied preobese and adult Zucker rats (fa/fa, fa/+ ) during fasting or glucose loading to assess glucose tolerance. Relevant pancreatic and intestinal hormonal levels were measured by Milliplex. Imaging of 18F-fluorodeoxyglucose by positron emission tomography was used to quantify glucose uptake in SAT, BAT, and liver, and evaluate its relationship with adipocyte size and biopsy-proven nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH). RESULTS Preobese fa/fa pups showed impaired glucose tolerance, adipocyte enlargement, hepatic microsteatosis, and lobular inflammation, with elevated hepatic post-glucose load glucose uptake and production. Adult fa/fa rats had more severe glucose intolerance, fasting hyperglycemia, hormonal abnormalities, elevated glucose uptake in SAT and BAT, and more markedly in the liver, together with macrosteatosis, and highly prevalent hepatic inflammation. Organ glucose uptake was proportional to the degree of fat accumulation and tissue inflammation and was able to dissect healthy from NAFLD and NAFLD/NASH livers. Most severe NASH livers showed a decline in glucose uptake and liver enzymes. CONCLUSIONS In fa/fa Zucker rats, leptin resistance leads to glucose intolerance, mainly due to hepatic glucose overproduction, preceding obesity, and explaining pancreatic and intestinal hormonal changes and fat accumulation in adipocytes and hepatocytes. Our data support the involvement of liver glucose uptake in the pathogenesis of liver inflammatory disease. Its potential as more generalized biomarker or diagnostic approach remains to be established outside of our leptin-receptor-deficient rat model.
Collapse
Affiliation(s)
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, Pisa, Italy
| | - Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, Pisa, Italy
| | - Antonietta Bartoli
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Manuela Cabiati
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Vincenzo De Sena
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Silvia Del Ry
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
5
|
Remchak MME, Piersol KL, Bhatti S, Spaeth AM, Buckman JF, Malin SK. Considerations for Maximizing the Exercise "Drug" to Combat Insulin Resistance: Role of Nutrition, Sleep, and Alcohol. Nutrients 2021; 13:1708. [PMID: 34069950 PMCID: PMC8157556 DOI: 10.3390/nu13051708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
Insulin resistance is a key etiological factor in promoting not only type 2 diabetes mellitus but also cardiovascular disease (CVD). Exercise is a first-line therapy for combating chronic disease by improving insulin action through, in part, reducing hepatic glucose production and lipolysis as well as increasing skeletal muscle glucose uptake and vasodilation. Just like a pharmaceutical agent, exercise can be viewed as a "drug" such that identifying an optimal prescription requires a determination of mode, intensity, and timing as well as consideration of how much exercise is done relative to sitting for prolonged periods (e.g., desk job at work). Furthermore, proximal nutrition (nutrient timing, carbohydrate intake, etc.), sleep (or lack thereof), as well as alcohol consumption are likely important considerations for enhancing adaptations to exercise. Thus, identifying the maximal exercise "drug" for reducing insulin resistance will require a multi-health behavior approach to optimize type 2 diabetes and CVD care.
Collapse
Affiliation(s)
- Mary-Margaret E. Remchak
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Kelsey L. Piersol
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Sabha Bhatti
- Division of Cardiovascular Medicine, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Andrea M. Spaeth
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Jennifer F. Buckman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08854, USA
| | - Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
6
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|