1
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Erdelyi-Hamza B, Petschner P, Sperlagh B, Anderson IM, Deakin JFW, Bagdy G, Juhasz G, Gonda X. Variation along P2RX7 interacts with early traumas on severity of anxiety suggesting a role for neuroinflammation. Sci Rep 2023; 13:7757. [PMID: 37173368 PMCID: PMC10182087 DOI: 10.1038/s41598-023-34781-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Emotional stress is a leading risk factor in the development of neuropsychiatric disorders possibly via immune activation. P2X7 receptors promote neuroinflammation, and research suggests a relationship between chromosome region 12q2431, in which the P2X7R gene is located, and development of mood disorders, however, few studies concentrate on its association with anxiety. Our aim was to investigate the effects of P2RX7 variation in interaction with early childhood traumas and recent stressors on anxiety. 1752 participants completed questionnaires assessing childhood adversities and recent negative life events, provided data on anxiety using the Brief Symptom Inventory, and were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into linear regression models followed by a linkage disequilibrium-based clumping procedure to identify clumps of SNPs with a significant main or interaction effect. We identified a significant clump with top SNP rs67881993 and containing a set of 29SNPs that are in high LD, which significantly interacted with early childhood traumas but not with recent stress conveying a protective effect against increased anxiety in those exposed to early adversities. Our study demonstrated that P2RX7 variants interact with distal and more etiological stressors in influencing the severity of anxiety symptoms, supporting previous scarce results and demonstrating its role in moderating the effects of stress.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Berta Erdelyi-Hamza
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Uji, Kyoto, Japan
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Hu B, Boyle CA, Lei S. Roles of PLCβ, PIP 2 , and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. J Cell Physiol 2021; 237:660-674. [PMID: 34287874 DOI: 10.1002/jcp.30535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V1a receptors. Functions of G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca2+ release and protein kinase C were unnecessary. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K+ -containing intracellular solution, whereas no inward currents were observed with Cs+ -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K+ reversal potential, suggesting the involvement of inwardly rectifying K+ channels. AVP-induced currents were sensitive to the micromolar concentration of Ba2+ and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K+ channels. Activation of V1a receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
3
|
Characterization of Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder Using Ketamine as an Experimental Medicine Probe. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2021; 6. [PMID: 34632081 PMCID: PMC8500463 DOI: 10.20900/jpbs.20210012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comorbid posttraumatic stress disorder and major depressive disorder (PTSD + MDD) is the most common pathological response to trauma, yet despite their synergistic detriment to health, knowledge regarding the neurobiological mechanism underlying PTSD + MDD is extremely limited. This study proposes a novel model of PTSD + MDD that is built on biological systems shown to underlay PTSD + MDD and takes advantage of ketamine’s unique suitability to probe PTSD + MDD due to its rescue of stress-related neuroplasticity deficits. The central hypothesis is that changes in PTSD + MDD clinical symptoms are associated with functional connectivity changes and cognitive dysfunction and that ketamine infusions improve clinical symptoms by correction of functional connectivity changes and improvement in cognition. Participants with PTSD + MDD (n = 42) will be randomized to receive a series of six ketamine infusions or saline-placebo over three weeks. Pre/post-measures will include: (1) neuroimaging; (2) cognitive functioning task performance; and (3) PTSD, MDD, and rumination self-report measures. These measures will also be collected once in a trauma-exposed group including PTSD-only (n = 10), trauma-exposed-MDD (TE-MDD; n = 10), and healthy controls (HC, n = 21). Successful completion of the study will strongly support the concept of a biologically-based model of PTSD + MDD. The results will (1) identify functional imaging signatures of the mechanisms underpinning pathological responses to trauma, (2) shift focus from mono-diagnostic silos to unified biological and behavioral disease processes and, thus, (3) inform interventions to correct dysregulation of PTSD + MDD symptom clusters thereby supporting more precise treatments and better outcomes.
Collapse
|
4
|
Sonmez AI, Almorsy A, Ramsey LB, Strawn JR, Croarkin PE. Novel pharmacological treatments for generalized anxiety disorder: Pediatric considerations. Depress Anxiety 2020; 37:747-759. [PMID: 32419335 PMCID: PMC7584375 DOI: 10.1002/da.23038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pediatric anxiety disorders such as generalized anxiety disorder (GAD) are common, impairing, and often undertreated. Moreover, many youth do not respond to standard, evidence-based psychosocial or psychopharmacologic treatment. An increased understanding of the gamma-aminobutyric acid (GABA) and glutamate neurotransmitter systems has created opportunities for novel intervention development for pediatric GAD. METHODS This narrative review examines potential candidates for pediatric GAD: eszopiclone, riluzole, eglumegad (LY354740), pimavanserin, agomelatine. RESULTS The pharmacology, preclinical data, clinical trial findings and known side effects of eszopiclone, riluzole, eglumegad (LY354740), pimavanserin, agomelatine, are reviewed, particularly with regard to their potential therapeutic relevance to pediatric GAD. CONCLUSION Notwithstanding numerous challenges, some of these agents represent potential candidate drugs for pediatric GAD. Further treatment development studies of agomelatine, eszopiclone, pimavanserin and riluzole for pediatric GAD also have the prospect of informing the understanding of GABAergic and glutamatergic function across development.
Collapse
Affiliation(s)
- A. Irem Sonmez
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Ammar Almorsy
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Laura B. Ramsey
- Division of Research in Patient Services and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Stanojlovic M, Pallais JP, Kotz CM. Chemogenetic Modulation of Orexin Neurons Reverses Changes in Anxiety and Locomotor Activity in the A53T Mouse Model of Parkinson's Disease. Front Neurosci 2019; 13:702. [PMID: 31417337 PMCID: PMC6682689 DOI: 10.3389/fnins.2019.00702] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/21/2019] [Indexed: 01/02/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PD symptomology is recognized as heterogeneous and in addition to motor function decline includes cognitive, mood, sleep, and metabolic disorders. Previous studies showed early reductions in anxiety and locomotion in the A53T mice model of PD. Since inflammation and astrogliosis are an integral part of PD pathology and impair proper neuronal function, we were keen to investigate if behavioral changes in A53T mice are accompanied by increased inflammation and astrogliosis in the hippocampus (Hipp) and motor cortex (mCtx) brain regions involved in the regulation of anxiety and locomotion, respectively. To test this, we used 3-, 5-, and 7-month-old A53T mice to examine anxiety-like behavior, locomotion, and expression of inflammation and astrogliosis markers in the Hipp and mCtx. Further, we examined the presence of alpha-synuclein accumulation in orexin neurons and orexin neuronal loss. The data show early reductions in anxiety-like behavior as well as increased locomotor activity, which was accompanied by inflammation and astrogliosis in the Hipp and mCtx. Due to the persistence of the orexin neuron population in A53T mice and the involvement of orexin in anxiety and locomotor regulation, we hypothesized that chemogenetic modulation of orexin neurons would reverse the observed reductions in anxiety-like behavior and the increases in locomotor activity in these animals. We showed that chemogenetic activation of orexin neurons in A53T mice restores anxiety-like behavior back to control levels without affecting locomotor activity, whereas the inhibition of orexin neurons reverses the elevated locomotor activity without any effects on anxiety-like behavior. This study exemplifies the complex role of orexin neurons in this model of PD and demonstrates the novel finding that changes in locomotor and anxiety-like behavior are accompanied by inflammation and astrogliosis. Together, these data suggest that the orexin system may play a significant role in early and late stages of PD.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States.,Minneapolis VA Health Care System, Geriatric Research, Education and Clinical Center, Minneapolis, MN, United States
| |
Collapse
|
6
|
Lee KM, Coelho MA, Class MA, Sern KR, Bocz MD, Szumlinski KK. mGlu5 Receptor Blockade Within the Nucleus Accumbens Shell Reduces Behavioral Indices of Alcohol Withdrawal-Induced Anxiety in Mice. Front Pharmacol 2018; 9:1306. [PMID: 30483137 PMCID: PMC6243038 DOI: 10.3389/fphar.2018.01306] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Abstract
Withdrawal from binge-drinking increases negative affect, coinciding with increased expression of the metabotropic glutamate receptor 5 (mGlu5) within the shell of the nucleus accumbens (AcbSh). Supporting a causal-effect relationship, systemic treatment with the mGlu5 receptor antagonist MTEP [3-((2-Methyl-4-thiazolyl)ethynyl)pyridine] is anxiolytic in binge-drinking adult and adolescent mice. Here, we employed neuropharmacological approaches to examine the functional relevance of AcbSh mGlu5 for behavioral indices of alcohol withdrawal-induced hyper-anxiety. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice consumed alcohol under modified Drinking-in-the-Dark procedures (10, 20, and 40% alcohol v/v) for 14 days. At an alcohol withdrawal time-point when mice manifest robust behavioral signs of hyper-anxiety (1 and 28 days withdrawal for adults and adolescents, respectively), mice were infused intra-AcbSh with 0, 1 or 10 μg MTEP and then affect was assayed in the light-dark shuttle box, marble-burying and forced swim tests. Brain tissue was collected to evaluate changes in Egr1 (early growth response protein 1) induction to index AcbSh neuronal activity. As expected, alcohol-experienced mice exhibited behavioral signs of hyper-emotionality. The anxiolytic effects of intra-AchSh MTEP were modest, but dose-dependent, and varied with age of drinking-onset. In adult-onset mice, only the 1 μg MTEP dose reduced withdrawal-induced hyper-anxiety, whereas only the higher dose was effective in adolescent-onset animals. MTEP reduced Egr1 expression within the AcbSh, irrespective of alcohol drinking history or age of drinking-onset. However, only the high MTEP dose reduced Egr1 expression in adolescent-onset binging mice. These results implicate AcbSh mGlu5 in modulating alcohol withdrawal-induced negative affect and suggest age differences in the neurobiological effects of alcohol withdrawal and behavioral responsiveness to mGlu5 blockade within the AcbSh.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michal A. Coelho
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - MacKayla A. Class
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kimberly R. Sern
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark D. Bocz
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Karen K. Szumlinski
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
7
|
Lee KM, Coelho MA, Class MA, Szumlinski KK. mGlu5-dependent modulation of anxiety during early withdrawal from binge-drinking in adult and adolescent male mice. Drug Alcohol Depend 2018; 184:1-11. [PMID: 29324247 PMCID: PMC6371787 DOI: 10.1016/j.drugalcdep.2017.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Binge alcohol-drinking elicits symptoms of negative affect such as anxiety upon cessation, which is a source of negative reinforcement for perpetuating this pattern of alcohol abuse. Binge-induced anxiety during early (24 h) withdrawal is associated with increased expression of metabotropic glutamate receptor 5 (mGlu5) within the nucleus accumbens shell (AcbSh) of adult male mice, but was unchanged in anxiety-resilient adolescents. Herein, we determined the role of mGlu5 signaling in withdrawal-induced anxiety via pharmacological manipulation using the mGlu5 negative allosteric modulator MTEP and the positive allosteric modulator CDPPB. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice binge-drank for 14 days under 3-bottle-choice procedures for 2 h/day; control animals drank water only. Approximately 24 h following the final alcohol presentation, animals were treated with 30 mg/kg IP MTEP, CDPPB, or vehicle and then tested, thirty minutes later, for behavioral signs of anxiety. Vehicle-treated binge-drinking adults exhibited hyperanxiety in all paradigms, while vehicle-treated binge-drinking adolescents did not exhibit withdrawal-induced anxiety. In adults, 30 mg/kg MTEP decreased alcohol-induced anxiety across paradigms, while 3 mg/kg MTEP was anxiolytic in adult water controls. CDPPB was modestly anxiogenic in both alcohol- and water-drinking mice. Adolescent animals showed minimal response to either CDPPB or MTEP, suggesting that anxiety in adolescence may be mGlu5-independent. These results demonstrate a causal role for mGlu5 in withdrawal-induced anxiety in adults and suggest age-related differences in the behavioral pharmacology of the negative reinforcing properties of alcohol.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - MacKayla A. Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA,Corresponding author at: University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA. (K.K. Szumlinski)
| |
Collapse
|
8
|
Reis AS, Pinz M, Duarte LFB, Roehrs JA, Alves D, Luchese C, Wilhelm EA. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J Psychiatr Res 2017; 84:191-199. [PMID: 27756019 DOI: 10.1016/j.jpsychires.2016.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence demonstrates that quinoline compounds have attracted much attention in the field of drug development. Accordingly, 4-phenylselenyl-7-chloroquinoline (4-PSQ) is a new quinoline derivative containing selenium, which showed a potential antioxidant, antinociceptive and anti-inflammatory effect. The present study was undertaken to evaluate the anxiolytic-like properties of 4-PSQ. Mice were orally pretreated with 4-PSQ (5-50 mg/kg) or vehicle, 30 min prior to the elevated plus-maze (EPM), light-dark (LDT) or open field (OFT) tests. A time-response curve was carried out by administration of 4-PSQ (50 mg/kg) at different times before the EPM test. The involvement of glutamate uptake/release and Na+, K+-ATPase activity in the anxiolytic-like effect was investigated in cerebral cortices. In addition, the effectiveness of acute treatment with 4-PSQ was evaluated in a model of kainate (KA)-induced anxiety-related behavior. Finally, acute toxicity of this compound was investigated. 4-PSQ produced an anxiolytic-like action, both in EPM and LDT. In OFT, 4-PSQ did not affect locomotor and exploratory activities. 4-PSQ anxiolytic-like effect started at 0.5 h and remained significant up to 72 h after administration. Treatment with 4-PSQ reduced [3H] glutamate uptake, but the [3H] glutamate release and Na+, K+-ATPase activity were not altered. KA-induced anxiety-related behavior was protected by 4-PSQ pretreatment. Additionally, 4-PSQ exposure did not alter urea levels, aspartate (AST) and alanine aminotrasferase (ALT) activities in plasma. Parameters of oxidative stress in brain and liver of mice were not modified by 4-PSQ. Taken together these data demonstrated that the anxiolytic-like effect caused by 4-PSQ seems to be mediated by involvement of the glutamatergic system.
Collapse
Affiliation(s)
- Angélica S Reis
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Mikaela Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Luis Fernando B Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Juliano A Roehrs
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brasil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil.
| |
Collapse
|
9
|
Averill LA, Purohit P, Averill CL, Boesl MA, Krystal JH, Abdallah CG. Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neurosci Lett 2016; 649:147-155. [PMID: 27916636 DOI: 10.1016/j.neulet.2016.11.064] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and debilitating psychiatric disorder afflicting millions of individuals across the world. While the availability of robust pharmacologic interventions is quite lacking, our understanding of the putative neurobiological underpinnings of PTSD has significantly increased over the past two decades. Accumulating evidence demonstrates aberrant glutamatergic function in mood, anxiety, and trauma-related disorders and dysfunction in glutamate neurotransmission is increasingly considered a cardinal feature of stress-related psychiatric disorders including PTSD. As part of a PTSD Special Issue, this mini-review provides a concise discussion of (1) evidence of glutamatergic abnormalities in PTSD, with emphasis on human subjects data; (2) glutamate-modulating agents as potential alternative pharmacologic treatments for PTSD; and (3) selected gaps in the literature and related future directions.
Collapse
Affiliation(s)
- Lynnette A Averill
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
| | - Prerana Purohit
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Christopher L Averill
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Markus A Boesl
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - John H Krystal
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Chadi G Abdallah
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| |
Collapse
|
10
|
Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent Mice Are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate Function within the Nucleus Accumbens. Front Cell Neurosci 2016; 10:265. [PMID: 27917110 PMCID: PMC5114265 DOI: 10.3389/fncel.2016.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb), coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: (1) withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers; and (2) increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence). Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v) for 2 h/day), while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh) and core (AcbC) subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations (BACs); however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test (FST) compared to water drinkers, which was paralleled by an increase in AcbC levels of GluN2b. Thus, a 2-week period of binge-drinking is sufficient to produce a hyper-anxious state and related increases in protein indices of Acb glutamate function. In contrast, adolescents were resilient to many of the effects of early alcohol withdrawal and this attenuated sensitivity to the negative consequences of binge drinking may facilitate greater alcohol intake in adolescent drinkers.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Hadley A. McGregor
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Noah R. Solton
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
11
|
Lei Z, Liu B, Wang JH. Reward memory relieves anxiety-related behavior through synaptic strengthening and protein kinase C in dentate gyrus. Hippocampus 2016; 26:502-516. [PMID: 26443682 DOI: 10.1002/hipo.22540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/12/2015] [Accepted: 10/02/2015] [Indexed: 01/21/2023]
Abstract
Anxiety disorders are presumably associated with negative memory. Psychological therapies are widely used to treat this mental deficit in human beings based on the view that positive memory competes with negative memory and relieves anxiety status. Cellular and molecular processes underlying psychological therapies remain elusive. Therefore, we have investigated its mechanisms based on a mouse model in which food reward at one open-arm of the elevated plus-maze was used for training mice to form reward memory and challenge the open arms. Mice with the reward training showed increased entries and stay time in reward open-arm versus neutral open-arm as well as in open-arms versus closed-arms. Accompanying with reward memory formation and anxiety relief, glutamatergic synaptic transmission in dentate gyrus in vivo and dendritic spines in granule cells became upregulated. This synaptic up-regulation was accompanied by the expression of more protein kinase C (PKC) in the dendritic spines. The inhibition of PKC by chelerythrine impaired the formation of reward memory, the relief of anxiety-related behavior and the up-regulation of glutamate synapses. Our results suggest that reward-induced positive memory relieves mouse anxiety-related behavior by strengthening synaptic efficacy and PKC in the hippocampus, which imply the underlying cellular and molecular processes involved in the beneficial effects of psychological therapies treating anxiety disorders.
Collapse
Affiliation(s)
- Zhuofan Lei
- State Key Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao University, Medical College, 38, Dengzhou, Shandong, China
| | - Bei Liu
- State Key Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- State Key Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
J. Onaolapo O, Y. Onaolapo A, A. Akanmu M, Olayiwola G. Changes in Spontaneous Working-memory, Memory-recall and Approach-avoidance following “Low Dose” Monosodium Glutamate in Mice. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.3.317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Bagewadi HG, Ak AK, Shivaramegowda RM. An Experimental Study to Evaluate the Effect of Memantine in Animal Models of Anxiety in Swiss Albino Mice. J Clin Diagn Res 2015; 9:FF01-5. [PMID: 26435964 DOI: 10.7860/jcdr/2015/13233.6287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Due to the adverse effects produced by the present conventional medicines for anxiety disorders, research for newer drugs is still desirable. From the literature it is evident that NMDA receptors play a key role in animal models of anxiety. AIM The present study is done to evaluate the antianxiety effect of memantine in swiss albino mice. MATERIALS AND METHODS The experimental study was conducted from November 2014 to January 2015. Animals were divided into four groups. Twelve mice were randomly allotted in each group. Animals in the first group received normal saline as a control 10ml/kg, lorazepam 0.5mg/kg was administered to second group, memantine 3mg/kg as a test drug was given to the third group and memantine 3mg/kg + lorazepam 0.5mg/kg was administered to the fourth group. All the drugs were given for 7 consecutive days by intraperitoneal route. RESULTS Results were analyzed by one-way ANOVA followed by Post-hoc Tukey's test. On the 1(st) day, memantine treated group did not show statistical significant anxiolytic effect in both the behavioural paradigms when compared to control group. On the 8(th) day, the animals showed significant decrease p<0.001 in step down latency period in shock free zone (185.4±3.87 Vs 278.3±5.49), significant increase p<0.001 in step down errors (6.8±0.78 Vs 1.4±0.19) and significant increase p<0.001 in total time spent in shock zone (32.1±2.22 Vs 5.6±0.6). In open field test, on 8(th) day the animals treated with memantine when compared to control group, showed significant increase p<0.001 in number of squares crossed (112.7± 2.69 Vs 83.2±2.96), time spent in central square (11.5±1.26 Vs 3.4±0.65), no. of rearings (32.4±2.61 Vs 17±1.81) and significant decrease p<0.001 in freezing time (15.2±1.12 Vs 20.2±2.29). Memantine showed synergistic antianxiety effect when combined with lorazepam. CONCLUSION Memantine showed significant anxiolytic effect in open field and passive avoidance response tests which are commonly used experimental models to assess anxiety states in animals.
Collapse
Affiliation(s)
- Harish G Bagewadi
- Assistant Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| | - Afzal Khan Ak
- Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| | - Rekha M Shivaramegowda
- Professor, Department of Pharmacology, MVJ Medical College & Research Hospital , Bangalore, India
| |
Collapse
|
14
|
Guggenhuber S, Romo-Parra H, Bindila L, Leschik J, Lomazzo E, Remmers F, Zimmermann T, Lerner R, Klugmann M, Pape HC, Lutz B. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility. Int J Neuropsychopharmacol 2015; 19:pyv091. [PMID: 26232789 PMCID: PMC4772822 DOI: 10.1093/ijnp/pyv091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany (Dr Guggenhuber, Dr Bindila, Dr Leschik, Dr Lomazzo, Dr Remmers, Ms Zimmermann, Ms Lerner, Dr Klugmann, and Dr Lutz); Institute of Physiology I (Neurophysiology), Westfaelische Wilhelms-University, Muenster, Germany (Drs Romo-Parra and Pape); Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, UNSW Kensington Campus, Sydney, NSW, Australia (Dr Klugmann).
| |
Collapse
|
15
|
Liu B, Feng J, Wang JH. Protein kinase C is essential for kainate-induced anxiety-related behavior and glutamatergic synapse upregulation in prelimbic cortex. CNS Neurosci Ther 2014; 20:982-90. [PMID: 25180671 DOI: 10.1111/cns.12313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022] Open
Abstract
AIM Anxiety is one of common mood disorders, in which the deficit of serotonergic and GABAergic synaptic functions in the amygdala and prefrontal cortex is believed to be involved. The pathological changes at the glutamatergic synapses and neurons in these brain regions as well as their underlying mechanisms remain elusive, which we aim to investigate. METHODS An agonist of kainate-type glutamate receptors, kainic acid, was applied to induce anxiety-related behaviors. The morphology and functions of glutamatergic synapses in the prelimbic region of mouse prefrontal cortex were analyzed using cellular imaging and electrophysiology. RESULTS After kainate-induced anxiety is onset, the signal transmission at the glutamatergic synapses is upregulated, and the dendritic spine heads are enlarged. In terms of the molecular mechanisms, the upregulated synaptic plasticity is associated with the expression of more protein kinase C (PKC) in the dendritic spines. Chelerythrine, a PKC inhibitor, reverses kainate-induced anxiety and anxiety-related glutamatergic synapse upregulation. CONCLUSION The activation of glutamatergic kainate-type receptors leads to anxiety-related behaviors and glutamatergic synapse upregulation through protein kinase C in the prelimbic region of the mouse prefrontal cortex.
Collapse
Affiliation(s)
- Bei Liu
- College of Life Science, University of Science and Technology of China, Hefei, China; State Key Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
16
|
Pereira VS, Casarotto PC, Hiroaki-Sato VA, Sartim AG, Guimarães FS, Joca SRL. Antidepressant- and anticompulsive-like effects of purinergic receptor blockade: involvement of nitric oxide. Eur Neuropsychopharmacol 2013; 23:1769-78. [PMID: 23434291 DOI: 10.1016/j.euroneuro.2013.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/27/2012] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
Activation of purinergic receptors by ATP (P2R) modulates glutamate release and the activation of post-synaptic P2R is speculated to induce nitric oxide (NO) synthesis. Increased glutamatergic and nitrergic signaling have been involved in the neurobiology of stress-related psychiatric disorders such as anxiety and depression. Therefore, the aim of this study was to test the effects of two P2R antagonists (PPADS and iso-PPADS) in animals submitted to models predictive of antidepressant-, anxiolytic- and anticompulsive-like effects. Swiss mice receiving PPADS at 12.5mg/kg showed reduced immobility time in the forced swimming test (FST) similarly to the prototype antidepressant imipramine (30mg/kg). This dose was also able to decrease the number of buried marbles in the marble-burying test (MBT), an anticompulsive-like effect. However, no effect was observed in animals submitted to the elevated plus maze (EPM) and to the open field test. The systemic administration of iso-PPADS, a preferential P2XR antagonist, also reduced the immobility time in FST, which was associated to a decrease in NOx levels in the prefrontal cortex. In addition, P2X7 receptor was found co-immunoprecipitated with neuronal nitric oxide synthase (NOS1) in the prefrontal cortex. These results suggest that P2X7, possibly coupled to NOS1, could modulate behavioral responses associated to stress-related disorders and it could be a new target for the development of more effective treatments for affective disorders.
Collapse
Affiliation(s)
- Vitor S Pereira
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Ahmadi H, Nasehi M, Rostami P, Zarrindast MR. Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors. Neuropharmacology 2013; 71:112-23. [DOI: 10.1016/j.neuropharm.2013.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 01/21/2023]
|
18
|
Bruno A, Micò U, Pandolfo G, Mallamace D, Abenavoli E, Di Nardo F, D'Arrigo C, Spina E, Zoccali RA, Muscatello MRA. Lamotrigine augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. J Psychopharmacol 2012; 26:1456-62. [PMID: 22351381 DOI: 10.1177/0269881111431751] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present 16-week double-blind, randomized, placebo-controlled trial had the aim to explore the efficacy of lamotrigine add-on pharmacotherapy on clinical symptomatology and cognitive functioning in a sample of patients with treatment-resistant obsessive-compulsive disorder (OCD) receiving serotonin reuptake inhibitors (SRIs). After clinical and neurocognitive assessments, patients were randomly allocated to receive, in a double-blind design, 100 mg/day of lamotrigine or a placebo. A final sample of 33 patients completed the study. The results obtained indicate that lamotrigine added to stable SRI treatment substantially improved obsessive-compulsive (Yale-Brown Obsessive Compulsive Scale: obsessions, p < 0.0001; compulsions, p < 0.0001; total score, p < 0.0001), and affective symptoms (Hamilton Rating Scale for Depression p < 0.0001). Regarding cognitive functions, improvement was observed only in Semantic Fluency (p = 0.004). The findings provide evidence that lamotrigine augmentation of SRI treatment is well tolerated and may be proposed as an effective therapeutic strategy to improve outcome in treatment-resistant OCD.
Collapse
Affiliation(s)
- Antonio Bruno
- Section of Psychiatry, Department of Neurosciences, Psychiatric and Anaesthesiological Sciences, University of Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Salomons AR, Pinzon NE, Boleij H, Kirchhoff S, Arndt SS, Nordquist RE, Lindemann L, Jaeschke G, Spooren W, Ohl F. Differential effects of diazepam and MPEP on habituation and neuro-behavioural processes in inbred mice. Behav Brain Funct 2012; 8:30. [PMID: 22686184 PMCID: PMC3464737 DOI: 10.1186/1744-9081-8-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 06/11/2012] [Indexed: 12/04/2022] Open
Abstract
Background Previous studies have demonstrated a profound lack of habituation in 129P3 mice compared to the habituating, but initially more anxious, BALB/c mice. The present study investigated whether this non-adaptive phenotype of 129P3 mice is primarily based on anxiety-related characteristics. Methods To test this hypothesis and extend our knowledge on the behavioural profile of 129P3 mice, the effects of the anxiolyticdiazepam (1, 3 and 5 mg/kg) and the putative anxiolytic metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 3, 10 and 30 mg/kg) treatment on within-trial (intrasession) habituation, object recognition (diazepam: 1 mg/kg; MPEP 10 mg/kg) and on the central-nervous expression of the immediate early gene c-Fos (diazepam: 1 mg/kg; MPEP 10 mg/kg) were investigated. Results Behavioural findings validated the initially high, but habituating phenotype of BALB/c mice, while 129P3 mice were characterized by impaired intrasession habituation. Diazepam had an anxiolytic effect in BALB/c mice, while in higher doses caused behavioural inactivity in 129P3 mice. MPEP revealed almost no anxiolytic effects on behaviour in both strains, but reduced stress-induced corticosterone responses only in 129P3 mice. These results were complemented by reduced expression of c-Fos after MPEP treatment in brain areas related to emotional processes, and increased c-Fos expression in higher integrating brain areas such as the prelimbic cortex compared to vehicle-treated 129P3 mice. Conclusions These results suggest that the strain differences observed in (non)adaptive anxiety behaviour are at least in part mediated by differences in gamma-aminobutyric acid- A and mGluR5 mediated transmission.
Collapse
Affiliation(s)
- Amber R Salomons
- Department of Animals in Science and Society, Division of Animal Welfare and Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 Utrecht, CM, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gill DA, Perry MA, McGuire EP, Pérez-Gómez A, Tasker RA. Low-dose neonatal domoic acid causes persistent changes in behavioural and molecular indicators of stress response in rats. Behav Brain Res 2012; 230:409-17. [PMID: 22387806 DOI: 10.1016/j.bbr.2012.02.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 12/22/2022]
Abstract
Appropriate stress responses rely on a finely-tuned neuronal balance that must continually adapt to a frequently changing external environment. Alterations in this balance can result in susceptibility to a variety of stress-related disorders, as well as exacerbate already existing conditions. We have previously reported that rat pups injected with a very low dose (20 μg/kg) of domoic acid during the second postnatal week of life display low-grade seizure behaviours when challenged with stressful tasks, and also exhibit a variety of structural and functional changes similar to those seen in temporal lobe epilepsy. The current study was designed to investigate markers of altered stress-response in this model. Following neonatal treatment, adult rats were tested in the elevated plus maze, as well as two water maze tasks, both of which involved a platform reversal challenge. Results indicated a modified behavioural stress/anxiety response, increased perseveration, and alterations in search strategy for all domoate-treated rats, as well as male-specific deficits in cognitive flexibility. In addition, 80% of treated males and 20% of treated females exhibited seizure behaviour. Western blot analysis revealed male-only increases in adrenergic receptor (α2a and α2c) and mineralocorticoid receptor expression, and subtle sex-specific changes in glucocorticoid receptor expression, but no differences in corticotropin-releasing factor receptors I/II, or dopamine D2 receptor expression. A significant decrease in glucocorticoid:mineralocorticoid ratio was also noted. We conclude that early exposure to DOM alters central mechanisms underlying stress response, and that this model may be valuable for investigating the connection between stress and neurological disorders.
Collapse
Affiliation(s)
- Daphne A Gill
- Department of Biomedical Sciences, University of Prince Edward Island 550 University Ave, Charlottetown, PE C1A4P3, Canada
| | | | | | | | | |
Collapse
|
21
|
Sinclair LI, Nutt DJ. Anxiolytics. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:669-79. [PMID: 22608651 DOI: 10.1016/b978-0-444-52002-9.00040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
|
22
|
Abstract
Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpretation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1 receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses.
Collapse
Affiliation(s)
- S Ruehle
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
23
|
Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR. Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: Focus on individual differences. Pharmacol Biochem Behav 2011; 98:161-8. [DOI: 10.1016/j.pbb.2010.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/26/2010] [Accepted: 12/04/2010] [Indexed: 01/11/2023]
|
24
|
Panksepp J, Fuchs T, Iacobucci P. The basic neuroscience of emotional experiences in mammals: The case of subcortical FEAR circuitry and implications for clinical anxiety. Appl Anim Behav Sci 2011. [DOI: 10.1016/j.applanim.2010.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Antinociceptive properties of conocarpan and orientin obtained from Piper solmsianum C. DC. var. solmsianum (Piperaceae). J Nat Med 2010; 64:402-8. [PMID: 20473574 DOI: 10.1007/s11418-010-0421-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
The antinociceptive properties of some fractions and two pure compounds, conocarpan and orientin, obtained from P. solmsianum leaves were investigated in several models of pain in mice. The results indicated that this plant exhibits a promising antinociceptive profile, as it produces active principles which are several times more active than some reference drugs used for comparison. The main compound tested, orientin, caused potent and dose-dependent effects against acetic acid-induced writhing and capsaicin- and glutamate-induced nociception, being more effective against the first one, with an ID(50) value of 6.5 mg/kg (14.5 micromol/kg). Orientin was about 20-fold more potent than acetylsalicylic acid and 3.5-fold more active than indomethacin. The antinociceptive effects of this plant may be attributed, at least partially, to the presence of conocarpan and, in particular, to the flavonoid orientin.
Collapse
|
26
|
Moreira JD, Knorr L, Ganzella M, Thomazi AP, de Souza CG, de Souza DG, Pitta CF, Mello e Souza T, Wofchuk S, Elisabetsky E, Vinadé L, Perry MLS, Souza DO. Omega-3 fatty acids deprivation affects ontogeny of glutamatergic synapses in rats: relevance for behavior alterations. Neurochem Int 2010; 56:753-9. [PMID: 20172010 DOI: 10.1016/j.neuint.2010.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 02/08/2023]
Abstract
Essential omega-3 polyunsaturated fatty acids (omega3) are crucial to brain development and function, being relevant for behavioral performance. In the present study we examined the influence of dietary omega3 in the development of the glutamatergic system and on behavior parameters in rats. Female rats received isocaloric diets, either with omega3 (omega3 group) or a omega3 deficient diet (D group). In ontogeny experiments of their litters, hippocampal immunocontent of ionotropic NMDA and AMPA glutamatergic receptors subunits (NR2 A\B and GluR1, respectively) and the alpha isoform of the calcium-calmodulin protein kinase type II (alphaCaMKII) were evaluated. Additionally, hippocampal [(3)H]glutamate binding and uptake were assessed. Behavioral performance was evaluated when the litters were adult (60 days old), through the open-field, plus-maze, inhibitory avoidance and flinch-jump tasks. The D group showed decreased immunocontent of all proteins analyzed at 02 days of life (P2) in comparison with the omega3 group, although the difference disappeared at 21 days of life (except for alphaCaMKII, which content normalized at 60 days old). The same pattern was found for [(3)H]glutamate binding, whereas [(3)H]glutamate uptake was not affected. The D group also showed memory deficits in the inhibitory avoidance, increased in the exploratory pattern in open-field, and anxiety-like behavior in plus-maze. Taken together, our results suggest that dietary omega3 content is relevant for glutamatergic system development and for behavioral performance in adulthood. The putative correlation among the neurochemical and behavioral alterations caused by dietary omega3 deficiency is discussed.
Collapse
Affiliation(s)
- Júlia D Moreira
- Biochemistry Department, ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pittenger C, Coric V, Banasr M, Bloch M, Krystal JH, Sanacora G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs 2008; 22:761-86. [PMID: 18698875 DOI: 10.2165/00023210-200822090-00004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances implicate amino acid neurotransmission in the pathophysiology and treatment of mood and anxiety disorders. Riluzole, which is approved and marketed for the treatment of amyotrophic lateral sclerosis, is thought to be neuroprotective through its modulation of glutamatergic neurotransmission. Riluzole has multiple molecular actions in vitro; the two that have been documented to occur at physiologically realistic drug concentrations and are therefore most likely to be clinically relevant are inhibition of certain voltage-gated sodium channels, which can lead to reduced neurotransmitter release, and enhanced astrocytic uptake of extracellular glutamate.Although double-blind, placebo-controlled trials are lacking, several open-label trials have suggested that riluzole, either as monotherapy or as augmentation of standard therapy, reduces symptoms of obsessive-compulsive disorder, unipolar and bipolar depression, and generalized anxiety disorder. In studies of psychiatrically ill patients conducted to date, the drug has been quite well tolerated; common adverse effects include nausea and sedation. Elevation of liver function tests is common and necessitates periodic monitoring, but has been without clinical consequence in studies conducted to date in psychiatric populations. Case reports suggest utility in other conditions, including trichotillomania and self-injurious behaviour associated with borderline personality disorder. Riluzole may hold promise for the treatment of several psychiatric conditions, possibly through its ability to modulate pathologically dysregulated glutamate levels, and merits further investigation.
Collapse
Affiliation(s)
- Christopher Pittenger
- Clinical Neuroscience Research Unit, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Kotlinska J, Bochenski M. The influence of various glutamate receptors antagonists on anxiety-like effect of ethanol withdrawal in a plus-maze test in rats. Eur J Pharmacol 2008; 598:57-63. [DOI: 10.1016/j.ejphar.2008.09.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/05/2008] [Accepted: 09/18/2008] [Indexed: 01/30/2023]
|
29
|
Ailing F, Fan L, Li S, Manji S. Role of extracellular signal-regulated kinase signal transduction pathway in anxiety. J Psychiatr Res 2008; 43:55-63. [PMID: 18348889 DOI: 10.1016/j.jpsychires.2008.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 01/03/2008] [Accepted: 01/25/2008] [Indexed: 11/26/2022]
Abstract
Extracellular signal-regulated kinase (ERK) signal transduction pathway is widely implicated in multiple physiological processes. However, it remains to be determined whether ERK pathway plays roles in anxiety. Here we investigated the changes of phosphorylated ERK1/2 (pERK1/2) and c-Fos expression by immunostaining in the medial prefrontal cortex (mPFC) of anxious rats. The results indicated that the levels of pERK and c-Fos were significantly increased during anxiety. Inhibition of ERK phosphorylation blocked the anxiety-induced c-Fos expression. In the animal behavioral tests, the PD98059-treated anxious rats had a significant increase in the numbers of the open-arm entries, the time spent in the open-arms and the numbers of head-dipping in EPM test, and increase the inner locomotion in the open field test compared with the anxious rats. The results suggested that the ERK signal transduction pathway might play an important role in anxiety, and inhibition of the ERK pathway in the mPFC could produce anxiolysis effect.
Collapse
Affiliation(s)
- Fu Ailing
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | | | | | | |
Collapse
|
30
|
Tsang SW, Vinters HV, Cummings JL, Wong PTH, Chen CPH, Lai MK. Alterations in NMDA receptor subunit densities and ligand binding to glycine recognition sites are associated with chronic anxiety in Alzheimer's disease. Neurobiol Aging 2008; 29:1524-32. [PMID: 17433503 PMCID: PMC2667969 DOI: 10.1016/j.neurobiolaging.2007.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/18/2007] [Accepted: 03/08/2007] [Indexed: 11/22/2022]
Abstract
Glutamatergic deficits are established neuropathological features of Alzheimer's disease (AD) and are known to correlate with cognitive impairments. In contrast, the role of glutamatergic alterations in behavioral and psychological symptoms of dementia (BPSD) is unclear. There is considerable preclinical evidence for the importance of glycine recognition sites (GlyRS) of N-methyl-D-aspartate (NMDA) receptors in the regulation of anxiety behaviors. This study aimed to correlate several glutamatergic measures with chronic anxiety in AD. Twenty-one AD patients assessed by the Neuropsychiatric Inventory (NPI) were divided into low anxiety (LA) and high anxiety (HA) subgroups. GlyRS and NMDA channel were measured by brain homogenate binding with [(3)H]MDL105,519 and [(3)H]MK-801, respectively. Densities of NMDA receptor NR2A, NR2B and alternate spliced NR1 subunits were quantified by immunoblotting. We found that the binding affinity to GlyRS was significantly higher in HA compared to LA, and this higher GlyRS affinity correlated with selective reduction of NR2A density as well as with elevated anxiety scores. Our observations suggest a novel mechanism whereby subunit specific changes in the NMDA receptor complex may be linked to chronic anxiety in AD via effects on GlyRS function. We propose that NR2A and GlyRS should be further assessed as novel targets of behavioral pharmacotherapy in AD.
Collapse
Affiliation(s)
- Shirley W.Y. Tsang
- Dementia Research Laboratory, Department of Clinical Research, Singapore General Hospital, Singapore
| | - Harry V. Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey L. Cummings
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter T.-H. Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P.L.-H. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K.P. Lai
- Dementia Research Laboratory, Department of Clinical Research, Singapore General Hospital, Singapore
| |
Collapse
|
31
|
Chapter 4.4 The glutamatergic system as a potential therapeutic target for the treatment of anxiety disorders. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
32
|
Suzuki G, Kimura T, Satow A, Kaneko N, Fukuda J, Hikichi H, Sakai N, Maehara S, Kawagoe-Takaki H, Hata M, Azuma T, Ito S, Kawamoto H, Ohta H. Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide (FTIDC). J Pharmacol Exp Ther 2007; 321:1144-53. [PMID: 17360958 DOI: 10.1124/jpet.106.116574] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A highly potent and selective metabotropic glutamate receptor (mGluR) 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2, 3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide (FTIDC), is described. FTIDC inhibits, with equal potency, l-glutamate-induced intracellular Ca(2+) mobilization in Chinese hamster ovary cells expressing human, rat, or mouse mGluR1a. The IC(50) value of FTIDC is 5.8 nM for human mGluR1a and 6200 nM for human mGluR5. The maximal response in agonist concentration-response curves was reduced in the presence of higher concentrations of FTIDC, suggesting the inhibition in a noncompetitive manner. FTIDC at 10 microM showed no agonistic, antagonistic, or positive allosteric modulatory activity toward mGluR2, mGluR4, mGluR6, mGluR7, or mGluR8. FTIDC did not displace [(3)H]l-quisqualate binding to human mGluR1a, indicating FTIDC is an allosteric antagonist. Studies using chimeric and mutant receptors of mGluR1 showed that transmembrane (TM) domains 4 to 7, especially Phe801 in TM6 and Thr815 in TM7, play pivotal roles in the antagonism of FTIDC. FTIDC inhibited the constitutive activity of mGluR1a, suggesting that FTIDC acts as an inverse agonist of mGluR1a. Intraperitoneally administered FTIDC inhibited face-washing behavior elicited by a group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine in mice at doses that did not produce motor impairment. Oral administration of FTIDC also inhibited the face-washing behavior. FTIDC is a highly potent and selective allosteric mGluR1 antagonist and a compound having oral activity without species differences in its antagonistic activity on recombinant human, mouse, and rat mGluR1. FTIDC could therefore be a valuable tool for elucidating the functions of mGluR1 not only in rodents but also in humans.
Collapse
Affiliation(s)
- Gentaroh Suzuki
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Palucha A, Pilc A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 2007; 115:116-47. [PMID: 17582504 DOI: 10.1016/j.pharmthera.2007.04.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022]
Abstract
Depression and anxiety represent a major problem. However, the current treatment of both groups of diseases is not satisfactory. As the glutamatergic system may play an important role in pathophysiology of both depression and anxiety, we decided to discuss the recent data on possible anxiolytic and/or antidepressant effects of metabotropic glutamate (mGlu) receptor ligands. Preclinical data indicated that antagonists of group I mGlu receptors, particularly antagonists of mGlu5 receptors, produced both anxiolytic-like and antidepressant-like effects. Clinical data also demonstrated that mGlu5 receptor antagonist, fenobam, was an active anxiolytic drug. The anxiolytic effects exerted by mGlu5 receptor antagonists are profound, comparable with or stronger than those of benzodiazepines. However, the problem with the psychotomimetic activity of mGlu5 receptor antagonists and their possible influence on memory has to be further investigated. Among all mGlu receptor ligands, group II mGlu receptor agonists seem to be the drugs with the most promising therapeutic potential and a good safety profile. Animal studies showed anxiolytic-like effects of group II mGlu receptor agonists. Currently, group II mGlu receptor agonists are in phase III clinical trials for potential treatment of anxiety disorders. On the other hand, data has been accumulated, indicating that antagonists of group II mGlu receptors have an antidepressant potential. Group III mGlu receptor ligands represent the least investigated group of mGlu receptors. However, preclinical data also indicates that ligands of these receptors, both agonists and antagonists, may have an anxiolytic-like and antidepressant-like potential.
Collapse
Affiliation(s)
- Agnieszka Palucha
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | | |
Collapse
|
34
|
Abstract
SUMMARY Psychopharmacological treatments in psychiatry are often surprises. Original targets frequently fail, and when successful, may only be the opening volley in a series of ever more important therapeutic applications. Drug development may begin by hypothesis-driven targeting of therapeutic indications with an agent of known and novel mechanism of action. Although this may generate a highly feasible therapeutic indication and can proceed by a well-worn regulatory pathway with known approvable endpoints, it may not only be the least innovative but also the least commercially successful strategy. Because surrogate markers of efficacy are only theoretically attractive but still largely elusive for psychiatric disorders, drug development strategies may need to proceed instead by opportunistic capturing of signals from clinical use of new agents once they enter clinical practice. Outcomes and dosing for clinical trial populations may not match those in clinical practice, so observations from clinical practice must feed back into new clinical trials. In many ways, once efficacy is proven for the originally targeted indication, drug development begins afresh. To get to secondary stages of novel indications for psychiatric drugs and thus to maximize each drug's therapeutic potential, evidence-based prescribing is followed by prescribing-based evidence, namely feedback from clinical practice into clinical proof-of-concept studies followed by large-scale studies and new indications. In many cases, the new indications are the more important therapeutic contributions and the most successful commercial application of a drug. Here we describe this strategy of psychiatric drug development and provide numerous examples.
Collapse
Affiliation(s)
- Stephen M Stahl
- Department of Psychiatry, University of California-San Diego, San Diego, California 92037, USA.
| |
Collapse
|
35
|
Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx 2006; 3:69-81. [PMID: 16490414 PMCID: PMC3593363 DOI: 10.1016/j.nurx.2005.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SUMMARY Obsessive-compulsive disorder (OCD) is a common psychiatric disorder that produces significant morbidity. The introduction of serotonin reuptake inhibitors in the 1980s represented an important advance in the treatment of OCD. However, few patients show complete remission of their symptoms, and some patients show minimal improvement with existing treatments. We review current treatment strategies and initial data supporting the efficacy of glutamate modulating agents as a novel class of pharmaceuticals for the treatment of OCD. Functional neuroimaging studies repeatedly reported metabolic hyperactivity in the cortico-striato-thalamo-cortical circuitry in patients with OCD. Recent magnetic resonance spectroscopy studies provide evidence of elevated glutamate levels in several brain regions in patients suffering from OCD. These findings raised the possibility that agents that reduce glutamate hyperactivity or its consequences in the CNS might be efficacious as novel therapeutic interventions. Indeed, initial evidence from our group suggests that the antiglutamatergic agent riluzole (Rilutek), which was developed for the treatment of amyotrophic lateral sclerosis, is effective in treatment-resistant OCD. Case reports suggest that other agents that modulate glutamatergic activity may likewise be effective. This new application of glutamate modulating agents holds promise for the treatment of this disabling and often inadequately treated disease.
Collapse
|
36
|
Davis M, Myers KM, Chhatwal J, Ressler KJ. Pharmacological treatments that facilitate extinction of fear: relevance to psychotherapy. NeuroRx 2006; 3:82-96. [PMID: 16490415 PMCID: PMC2919202 DOI: 10.1016/j.nurx.2005.12.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARY A great deal is now known about the mechanisms of conditioned fear acquisition and expression. More recently, the mechanisms of inhibition of conditioned fear have become the subject of intensive study. The major model system for the study of fear inhibition in the laboratory is extinction, in which a previously fear conditioned organism is exposed repeatedly to the fear-eliciting cue in the absence of any aversive event and the fear conditioned response declines. It is well established that extinction is a form of new learning as opposed to forgetting or "unlearning" of conditioned fear, and it is hypothesized that extinction develops when sensory pathways conveying sensory information to the amygdala come to engage GABAergic interneurons through forms of experience-dependent plasticity such as long-term potentiation. Several laboratories currently are investigating methods of facilitating fear extinction in animals with the hope that such treatments might ultimately prove to be useful in facilitating exposure-based therapy for anxiety disorders in clinical populations. This review discusses the advances that have been made in this field and presents the findings of the first major clinical study to examine the therapeutic utility of a drug that facilitates extinction in animals. It is concluded that extinction is an excellent model system for the study of fear inhibition and an indispensable tool for the screening of putative pharmacotherapies for clinical use.
Collapse
Affiliation(s)
- Michael Davis
- Emory University School of Medicine, Center for Behavioral Neuroscience, and the Yerkes National Primate Center, Atlanta, Georgia 30329, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
How does a small molecule blocking a few receptors change a patients' passionately held paranoid belief that the FBI is out to get him? To address this central puzzle of antipsychotic action, we review a framework linking dopamine neurochemistry to psychosis, and then link this framework to the mechanism of action of antipsychotics. Normal dopamine transmission has a role in predicting novel rewards and in marking and responding to motivationally salient stimuli. Abnormal dopamine transmission alters these processes and results in an aberrant sense of novelty and inappropriate assignment of salience leading to the experience of psychosis. Antipsychotics improve psychosis by diminishing this abnormal transmission by blocking the dopamine D2/3 receptor (not D1 or D4), and although several brain regions may be involved, it is suggested that the ventral striatal regions (analog of the nucleus accumbens in animals) may have a particularly critical role. Contrary to popular belief, the antipsychotic effect is not delayed in its onset, but starts within the first few days. There is more improvement in the first 2 weeks, than in any subsequent 2-week period thereafter. However, a simple organic molecule cannot target the complex phenomenology of the individual psychotic experience. Antipsychotics diminish dopamine transmission and thereby dampen the salience of the pre-occupying symptoms. Therefore, in the initial stage of an antipsychotic response, the patients experience a detachment from symptoms, a relegation of the delusions and hallucinations to the back of their minds, rather than a complete erasure of the symptoms. Only with time, and only in some, via the mediation of new learning and plasticity, is there a complete resolution of symptoms. The implications of these findings for clinical care, animal models, future target discovery and drug development are discussed.
Collapse
Affiliation(s)
- Shitij Kapur
- Centre for Addiction and Mental Health, Toronto, Canada M5S 1A1; University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|