1
|
Wang J, Song H, Zhang Y. Comprehensive analysis of gene expression and DNA methylation for preeclampsia progression. J Chin Med Assoc 2021; 84:410-417. [PMID: 33595987 DOI: 10.1097/jcma.0000000000000499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The purpose of our study is to identify novel preeclampsia (PE)-related methylation genes and uncover the molecular mechanism of PE. METHODS All the datasets of gene expression and DNA methylation datasets for PE and normal samples were obtained from the Gene Expression Omnibus database. We first identified the differentially expressed genes (DEGs) and differential methylation genes (DMGs) between PE and normal samples followed by the functional enrichment analysis. Comprehensive analysis of DEGs and DMGs was also conducted for the identification of valuable PE-related biomarkers. The methylation validation was also performed with MassARRAY. RESULTS Three DNA methylation and three gene expression datasets were incorporated. We obtained 1754 DEGs and 99 DMGs in PE samples with the thresholds of p value <0.05, |Δbeta| > 0.1, and p value <0.05, respectively. Functional analysis of DEGs obtained cell adhesion molecules and leukocyte transendothelial migration. Besides, several valuable biomarkers of PE, including OCA2, CDK2AP1, and ADAM12, were identified through the integrated analysis of gene expression and DNA methylation datasets. Four methylation sites (cg03449867, cg09084244, cg09247979, and cg24194674) were validated, among which cg03449867 and cg09084244 were found to be hypermethylated and the related genes of OCA2 and CDK2AP1 were downregulated in PE compared with normal samples simultaneously. cg24194674 was hypomethylated and its correlated gene ADAM12 was upregulated in PE compared with normal samples simultaneously. CONCLUSION Our study should be helpful for the development of potential biomarkers and therapeutic targets for PE.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Obstetrics, Dongying People's Hospital, Dongying, Shandong, China
| | | | | |
Collapse
|
2
|
Placenta-derived IL-32β activates neutrophils to promote preeclampsia development. Cell Mol Immunol 2021; 18:979-991. [PMID: 33707686 PMCID: PMC8115232 DOI: 10.1038/s41423-021-00636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Immune activation at the maternal-fetal interface is a main pathogenic factor of preeclampsia (PE). Neutrophils (PMNs) are activated in PE patients, but the mechanism and consequences of PMN activation need to be further explored. Here, we demonstrated that interleukin-32 (IL-32) expression was significantly upregulated in syncytiotrophoblasts (STBs) and that IL-32β was the major isoform with increased expression in the placenta of severe PE (sPE) patients. Furthermore, the level of IL-32 expression in the placenta was correlated with its level in the serum of sPE patients, indicating that IL-32 in the serum is derived mainly from the placenta. Then, in vitro experiments showed that IL-32β could highly activate PMNs and that these IL-32β-activated PMNs were better able to adhere to endothelial cells (HUVECs) and enhance the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) in HUVECs, which could be reversed by preincubation with the NADPH oxidase inhibitor VAS 2870. In addition, we showed that IL-32β mainly activated PMNs by binding to proteinase 3. Finally, IL-32β administration induced a PE-like phenotype in a pregnant mouse model. This study provides evidence of the involvement of IL-32β in the pathogenesis of PE.
Collapse
|
3
|
Huhtala MS, Tertti K, Pellonperä O, Rönnemaa T. Amino acid profile in women with gestational diabetes mellitus treated with metformin or insulin. Diabetes Res Clin Pract 2018; 146:8-17. [PMID: 30227169 DOI: 10.1016/j.diabres.2018.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 01/20/2023]
Abstract
AIMS We compared the effects of metformin and insulin treatments of gestational diabetes mellitus (GDM) on amino acid metabolism. METHODS 217 pregnant women diagnosed with GDM were randomized to receive either metformin or insulin. 1H nuclear magnetic spectroscopy was used to determine serum concentrations of alanine, glutamine, glycine, isoleucine, leucine, valine, histidine, phenylalanine, tyrosine, glucose and lactate at the time of diagnosis and at 36 gestational weeks (gw). RESULTS Majority of the amino acid concentrations increased from 30 to 36 gw. The rise in alanine (16% vs. 8%, p < 0.0001), isoleucine (11% vs. 5%, p = 0.035) and lactate (29% vs. 14% p = 0.015) was larger in the metformin group compared to insulin group. Baseline alanine, glycine, isoleucine, leucine, valine and tyrosine were positively related to slightly earlier delivery. Alanine at 36 gw was positively associated with birth weight and glutamine with gestational hypertension or preeclampsia. Lactate at 36 gw was not associated with any adverse outcome. CONCLUSIONS Compared to insulin metformin caused a greater increase in serum alanine, isoleucine and lactate concentrations. Although the observed differences in the metabolic variables were relatively small and not outright concerning, additional studies and follow-up data are required to ensure the safety of metformin use in pregnancy. The trial was registered in Clinicaltrials.gov, NCT01240785; http://clinicaltrials.gov/ct2/show/NCT01240785.
Collapse
Affiliation(s)
- Mikael S Huhtala
- Department of Obstetrics and Gynecology, University of Turku, 20014 Turku, Finland.
| | - Kristiina Tertti
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Outi Pellonperä
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, 20014 Turku, Finland,; Division of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
| |
Collapse
|
4
|
Sandrim VC, Luizon MR, Palei AC, Tanus-Santos JE, Cavalli RC. Circulating microRNA expression profiles in pre-eclampsia: evidence of increased miR-885-5p levels. BJOG 2016; 123:2120-2128. [PMID: 26853698 DOI: 10.1111/1471-0528.13903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To validate and to compare the circulating microRNA (miR) expression profiles between pre-eclampsia and healthy pregnant women, to perform correlation analysis of the differently expressed miRs with clinical and biochemical parameters, and to verify the extracellular localisation of miRs in apoptotic bodies, microvesicles, and exosomes. DESIGN A case-control study with a replication study. SETTING Pregnant women attending maternity hospitals in Southeastern Brazil. POPULATION Two obstetric white populations: a case-control study (19 pre-eclampsia and 14 healthy pregnant) and a replication study (eight pre-eclampsia and eight healthy pregnant). METHODS PCR-array with 84 different miRs was performed in plasma from five pre-eclampsia and four healthy pregnant women. In the case-control study, differently expressed miRs were validated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and correlated with clinical and biochemical parameters. The plasma was then fractioned to study the extracellular localisation of miRs. MAIN OUTCOME MEASURES Gene expression profiles of miRs. RESULTS From PCR-array, three miRs (miR-376c-3p, miR-19a-3p, and miR-19b-3p) were found to be down-regulated and the miR-885-5p was found to be up-regulated in pre-eclampsia compared with healthy pregnant women. In the validation step, miR-885-5p was the only significantly different miR (fold-change = 5.0, P < 0.05), which was confirmed in the replication study (fold-change = 4.5, P < 0.05). Moreover, miR-885-5p was significantly correlated with the hepatic enzyme aspartate transaminase (r = 0.66; P = 0.0034) and it was mostly associated with the exosomes (32-fold higher than apoptotic bodies). CONCLUSIONS miR-885-5p is increased in plasma from pre-eclampsia compared with healthy pregnant women, and it is released into circulation mainly inside exosomes. TWEETABLE ABSTRACT: miR-885-5p is increased in pre-eclampsia and is released into circulation mainly inside exosomes.
Collapse
Affiliation(s)
- V C Sandrim
- Department of Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - M R Luizon
- Department of Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - A C Palei
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - J E Tanus-Santos
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| | - R C Cavalli
- Department of Gynaecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Turunen R, Andersson S, Laivuori H, Kajantie E, Siitonen S, Repo H, Nupponen I. Increased postnatal inflammation in mechanically ventilated preterm infants born to mothers with early-onset preeclampsia. Neonatology 2011; 100:241-7. [PMID: 21701213 DOI: 10.1159/000325159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/04/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preeclampsia and preterm labor often underlie preterm birth, and are associated with maternal inflammation. In preterm infants, respiratory distress syndrome (RDS) and mechanical ventilation are associated with systemic inflammation. OBJECTIVE We aimed to study whether early-onset preeclampsia or preterm labor modulate the systemic inflammation affecting preterm infants with RDS. METHODS We recruited mechanically ventilated infants with gestational ages <32 weeks; 11 infants were born after early-onset preeclampsia and 25 after preterm labor. Blood was drawn during postnatal days 1-7, and the mean values of days 1-2, 3-4 and 5-6 were used. Phagocyte CD11b expression was analyzed with flow cytometry, and plasma C-reactive protein (CRP) concentrations with immunoturbidimetry. RESULTS As compared with infants born after preterm labor, infants born after early-onset preeclampsia had higher CD11b expression on days 1-6 on both neutrophils and monocytes. In addition, infants born after early-onset preeclampsia had higher CRP concentrations on days 2-6 (all p < 0.05). CONCLUSIONS As compared with infants born after preterm labor to mothers without preeclampsia, infants born after early-onset preeclampsia presented with a stronger postnatal systemic inflammatory reaction. Antenatal exposure to preeclampsia may induce fetal leukocyte priming and regulation of inflammation, and thereby modify postnatal inflammatory reactions and morbidity.
Collapse
Affiliation(s)
- Riikka Turunen
- Hospital for Children and Adolescents, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
6
|
Review: The effects of oxygen on normal and pre-eclamptic placental tissue--insights from metabolomics. Placenta 2010; 32 Suppl 2:S119-24. [PMID: 21195475 DOI: 10.1016/j.placenta.2010.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 11/21/2022]
Abstract
Placental dysfunction is central to many complications of human pregnancy including pre-eclampsia (PE), intra-uterine growth restriction (IUGR) and stillbirth. The precise molecular pathophysiology of placental dysfunction in these conditions is not known, although oxidative and nitrative stresses have been implicated. Metabolites are low molecular weight chemicals which play an important role in biological function, primarily through metabolism and regulation of biological processes. The holistic study of metabolites, defined as metabolomics or metabolic profiling, has the objective to detect and identify all, or a large complement of all metabolites. Metabolomics is applied to discover new knowledge regarding biological processes and systems. We hypothesised that a metabolomic strategy could (1) provide a reproducible technique to investigate the intracellular metabolism of placental tissue and also metabolites consumed from or secreted in to the extracellular 'metabolic footprint' of in vitro culture systems (2) identify metabolic related differences in placental tissue culture systems subjected to perturbations in oxygen tension and from pregnancies complicated by PE. We review our early studies which demonstrate that a reproducible experimental protocol is required, including the preparation of culture medium and the site of the placenta applied for sampling tissue. We have detected changes in the intracellular metabolome and metabolic footprint of placental tissue in response to altered oxygen tension and PE. We have demonstrated that placental tissue from uncomplicated pregnancies cultured in 1% oxygen (hypoxia) had metabolic similarities to explants from PE pregnancies cultured at 6% oxygen (normoxia). Metabolites requiring further study include lipids, glutamate and glutamine and metabolites related to tryptophan, leukotriene and prostaglandin metabolism. Metabolomics has the potential to identify changes in clinical conditions, such as PE, that are associated with placental molecular pathophysiology.
Collapse
|
7
|
Xue F, Zhang JJ, Xu LM, Zhang C, Xia Q. Protective effects of HGF-MSP chimer (metron factor-1) on liver ischemia-reperfusion injury in rat model. J Dig Dis 2010; 11:299-305. [PMID: 20883426 DOI: 10.1111/j.1751-2980.2010.00453.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE It has been reported that metron factor-1 (MF-1), an engineered chimerical factor containing selected functional domains of hepatocyte growth factor and macrophage-stimulating protein (HGF-MSP), could prevent apoptosis and have an anti-inflammatory effect. In this study, we investigate the protective effect of MF-1 on liver ischemia-reperfusion (I/R) injury. METHODS Overall 30 Sprague Dawley rats were randomly divided into three groups: the I/R model group (n=12), the MF-1 treatment group (n=12), and the sham-operated group (n=6). Liver I/R injury was induced by clamping the blood supply to the left and median lobes of liver by an atraumatic clamp for 90 min, then removing the clamp and allowing reperfusion. Blood samples were obtained on days 1, 2, 3 and 7 to assess liver biochemistry and the histology of liver tissue. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), nitric oxide (NO), endothelial nitric oxide synthase and inducible nitric oxide synthase were measured. In addition, the anti-oxidative effect of MF-1 on hepatocytes was assessed in vitro. RESULTS MF-1 treatment improved the rat survival rate significantly (P < 0.05). Liver biochemistry and histological changes were significantly ameliorated. MDA increased and SOD and NO decreased in the liver tissue. In vitro, MF-1 protected the human hepatic cell line HL-7702 from damage of oxidative stress. CONCLUSION MF-1 could protect the liver from I/R injury, which might involve the reduction of oxygen free radicals and the increase of NO synthesis in an injured liver.
Collapse
Affiliation(s)
- Feng Xue
- Organ Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, China.
| | | | | | | | | |
Collapse
|
8
|
Heterogeneous pathways of maternal-fetal transmission of human viruses (review). Pathol Oncol Res 2010; 15:451-65. [PMID: 19350418 DOI: 10.1007/s12253-009-9166-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/24/2009] [Indexed: 12/18/2022]
Abstract
Several viruses can pass the maternal-fetal barrier, and cause diseases of the fetus or the newborn. Recently, however, it became obvious, that viruses may invade fetal cells and organs through different routes without acute consequences. Spermatozoa, seminal fluid and lymphocytes in the sperm may transfer viruses into the human zygotes. Viruses were shown to be integrated into human chromosomes and transferred into fetal tissues. The regular maternal-fetal transport of maternal cells has also been discovered. This transport might implicate that lymphotropic viruses can be released into the fetal organs following cellular invasion. It has been shown that many viruses may replicate in human trophoblasts and syncytiotrophoblast cells thus passing the barrier of the maternal-fetal interface. The transport of viral immunocomplexes had also been suggested, and the possibility has been put forward that even anti-idiotypes mimicking viral epitopes might be transferred by natural mechanisms into the fetal plasma, in spite of the selective mechanisms of apical to basolateral transcytosis in syncytiotrophoblast and basolateral to apical transcytosis in fetal capillary endothelium. The mechanisms of maternal-fetal transcytosis seem to be different of those observed in differentiated cells and tissue cultures. Membrane fusion and lipid rafts of high cholesterol content are probably the main requirements of fetal transcytosis. The long term presence of viruses in fetal tissues and their interactions with the fetal immune system might result in post partum consequences as far as increased risk of the development of malignancies and chronic pathologic conditions are discussed.
Collapse
|
9
|
Dunn WB, Brown M, Worton SA, Crocker IP, Broadhurst D, Horgan R, Kenny LC, Baker PN, Kell DB, Heazell AEP. Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta 2009; 30:974-80. [PMID: 19775752 DOI: 10.1016/j.placenta.2009.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 02/03/2023]
Abstract
Pre-eclampsia (PE) is a multi-system disorder thought to be mediated by circulating factors released from damaged placental villous trophoblast. There is extensive evidence of changes in the villous tissue in PE, some of which may be replicated by culturing villous tissue in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors released from this tissue in vitro. This study investigated differences in the factors released from villous trophoblast from uncomplicated pregnancies (n=6) and those with PE (n=6). In both cases, explanted placental villous fragments were cultured for 96 h in 1% O(2) (hypoxia) or 6% O(2) (placental normoxia). Metabolites consumed from and released into serum-conditioned culture medium were analysed by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). The relative concentration of 154 features of the metabolic footprint were observed to change in culture medium from uncomplicated pregnancies cultured in normoxic and hypoxic conditions (p<0.00005). 21 and 80 features were also different in culture medium from PE versus uncomplicated pregnancies cultured in hypoxic and normoxic conditions, respectively (p<0.00005). When comparing all 4 groups, 47 metabolic features showed a similar relative concentration in PE-derived media cultured in normoxic conditions to conditioned media from normal villous tissue cultured in hypoxic conditions. These data suggest that hypoxia may have a role in the placental pathogenesis of PE. Three areas of metabolism were highlighted for systems biology investigation; glutamate and glutamine, tryptophan metabolism and leukotriene or prostaglandin metabolism.
Collapse
Affiliation(s)
- W B Dunn
- Manchester Centre for Integrative Systems Biology, University of Manchester, M1 7DN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glutamine attenuates lipopolysaccharide-induced acute lung injury. Nutrition 2009; 25:692-8. [PMID: 19286350 DOI: 10.1016/j.nut.2008.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVES It has been reported that glutamine (GLN) can attenuate acute lung injury after sepsis. GLN is also thought to be a precursor of glutathione (GSH) synthesis. Using the GSH synthesis blocker, L-buthionine-(S,R)-sulfoximine (BSO), we investigated the role of GSH synthesis in the protective effect of GLN on acute lung injury. METHODS In this study, we used an acute lung injury model induced by intratracheal injection of lipopolysaccharide (1 mg mL(-1) kg(-1)). GLN (0.75 g/kg, intravenous) and BSO (2 mmol/kg, intraperitoneal) were administrated simultaneously. At 2 and 18 h after the injections, the rats were sacrificed by right ventricular puncture and bronchoalveolar lavage was done. The lower right lung was excised for histologic examination. Total protein concentration and total cell and neutrophil counts in the bronchoalveolar lavage fluid were determined. CD11b expression in the blood was determined by flow cytometry. We also analyzed myeloperoxidase activity, and GSH and interleukin-8 levels in lung tissues. RESULTS GLN supplementation reduced the total protein concentration and total cell and neutrophils counts in bronchoalveolar lavage fluid after lipopolysaccharide challenge. GLN enhanced GSH synthesis and attenuated interleukin-8 release and myeloperoxidase activity in lung tissues. GLN also decreased CD11b expression in blood neutrophils and prevented lung histologic changes. BSO abolished the effects of GLN and attenuated its protection on acute lung injury. CONCLUSION These results indicate that GLN could prevent neutrophil recruitment and infiltration, protect the alveolar barrier, and attenuate inflammatory injury during sepsis. This effect may be related to enhanced GSH synthesis.
Collapse
|