1
|
Chiba T, Kooka A, Kowatari K, Yoshizawa M, Chiba N, Takaguri A, Fukushi Y, Hongo F, Sato H, Wada S. Expression profiles of hsa-miR-148a-3p and hsa-miR-125b-5p in human breast milk and infant formulae. Int Breastfeed J 2022; 17:1. [PMID: 34980190 PMCID: PMC8725387 DOI: 10.1186/s13006-021-00436-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background Milk-derived microRNAs (miRNAs), including hsa-miR-148a-3p (miR-148a) and hsa-miR-125b-5p (miR-125b), have been shown to be beneficial to the gastrointestinal function in infants. Here, we investigated their expression during lactation in humans and determined whether the infant formulae available in Japan contain these miRNAs. Methods Healthy Japanese women (n = 16) who gave birth vaginally or by cesarean section at the Teine Keijinkai Hospital between 1 September 2020, and 31 April 2021 were included in this study. Breast milk was collected by nurses on days 4 or 5 after delivery (hereinafter, transition milk) and on day 30 of postpartum (hereinafter, mature milk). The levels of miR-148a and miR-125b in breastmilk and six commercially available infant formulae were compared and evaluated using quantitative reverse transcription-polymerase chain reaction. Results In all participants, the miR-148a level in mature breastmilk was significantly lower than that in the transition milk. The changes in miR-125b expression during lactation showed similar trends to the changes in miR-148a expression. The miR-148a and miR-125b levels in all analyzed infant formulae were lower than 1/500th and 1/100th of those in mature breastmilk, respectively. Conclusions The levels of both miR-148a and miR-125b in human breast milk decreased on day 30 postpartum compared with those in the transition milk. Additionally, the expression of these miRNAs in infant formulae available in Japan was very low. Further studies with larger populations are required to understand precisely the lactational changes in the expression of miR148a and miR-125b in breast milk.
Collapse
Affiliation(s)
- Takeshi Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan. .,Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, Sapporo-shi, Hokkaido, Japan.
| | - Aya Kooka
- Department of Pharmacy, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Kiyoko Kowatari
- Department of Nursing, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Megumi Yoshizawa
- Department of Nursing, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | | | - Akira Takaguri
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, Sapporo-shi, Hokkaido, Japan
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Fuminori Hongo
- Department of Pharmacy, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| | - Hideki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8565, Japan
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, Sapporo-shi, Hokkaido, Japan
| |
Collapse
|
2
|
The Gut‒Breast Axis: Programming Health for Life. Nutrients 2021; 13:nu13020606. [PMID: 33673254 PMCID: PMC7917897 DOI: 10.3390/nu13020606] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
The gut is a pivotal organ in health and disease. The events that take place in the gut during early life contribute to the programming, shaping and tuning of distant organs, having lifelong consequences. In this context, the maternal gut plays a quintessence in programming the mammary gland to face the nutritional, microbiological, immunological, and neuroendocrine requirements of the growing infant. Subsequently, human colostrum and milk provides the infant with an impressive array of nutrients and bioactive components, including microbes, immune cells, and stem cells. Therefore, the axis linking the maternal gut, the breast, and the infant gut seems crucial for a correct infant growth and development. The aim of this article is not to perform a systematic review of the human milk components but to provide an insight of their extremely complex interactions, which render human milk a unique functional food and explain why this biological fluid still truly remains as a scientific enigma.
Collapse
|