1
|
Hermans AJH, Laarhuis BI, Kouw IWK, van Zanten ARH. Current insights in ICU nutrition: tailored nutrition. Curr Opin Crit Care 2023; 29:101-107. [PMID: 36762671 PMCID: PMC9994849 DOI: 10.1097/mcc.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW To summarize recent research on critical care nutrition focusing on the optimal composition, timing, and monitoring of enteral feeding strategies for (post)-ICU patients. We provide new insights on energy and protein recommendations, feeding intolerance, and describe nutritional practices for coronavirus disease 2019 ICU patients. RECENT FINDINGS The use of indirect calorimetry to establish individual energy requirements for ICU patients is considered the gold standard. The limited research on optimal feeding targets in the early phase of critical illness suggests avoiding overfeeding. Protein provision based upon the absolute lean body mass is rational. Therefore, body composition measurements should be considered. Body impedance analysis and muscle ultrasound seem reliable, affordable, and accessible methods to assess body composition at the bedside. There is inadequate evidence to change our practice of continuous enteral feeding into intermittent feeding. Finally, severe acute respiratory syndrome coronavirus 2 patients are prone to underfeeding due to hypermetabolism and should be closely monitored. SUMMARY Nutritional therapy should be adapted to the patient's characteristics, diagnosis, and state of metabolism during ICU stay and convalescence. A personalized nutrition plan may prevent harmful over- or underfeeding and attenuate muscle loss. Despite novel insights, more research is warranted into tailored nutrition strategies during critical illness and convalescence.
Collapse
Affiliation(s)
- Anoek Jacqueline Hubertine Hermans
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, The Netherlands
| | | | | | - Arthur Raymond Hubert van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, The Netherlands
| |
Collapse
|
3
|
Chapple LAS, Kouw IWK, Summers MJ, Weinel LM, Gluck S, Raith E, Slobodian P, Soenen S, Deane AM, van Loon LJC, Chapman MJ. Muscle Protein Synthesis Following Protein Administration in Critical Illness. Am J Respir Crit Care Med 2022; 206:740-749. [PMID: 35584344 DOI: 10.1164/rccm.202112-2780oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale Dietary protein may attenuate the muscle atrophy experienced by patients in the Intensive Care Unit (ICU), yet protein handling is poorly understood. Objective To quantify protein digestion and amino acid absorption, and fasting and postprandial myofibrillar protein synthesis during critical illness. Methods Fifteen mechanically ventilated adults (12M; age 50±17y, Body Mass Index (BMI) 27±5kg·m-2) and 10 healthy controls (6M; 54±23y, BMI 27±4kg·m-2) received a primed intravenous L-[ring-2H5]-phenylalanine, L-[3,5-2H2]-tyrosine, and L-[1-13C]-leucine infusion over 9.5h, and a duodenal bolus of intrinsically-labelled (L-[1-13C]-phenylalanine and L-[1-13C]-leucine) intact milk protein (20g protein) over 60min. Arterial blood and muscle samples were taken at baseline (fasting) and for 6h following duodenal protein administration. Data are mean±SD; analysed with 2-way repeated measures ANOVA and independent samples t-test. Measurements and main results Fasting myofibrillar protein synthesis rates did not differ between ICU patients and healthy controls (0.023±0.013 vs 0.034±0.016%/h; P=0.077). Following protein administration, plasma amino acid availability did not differ between groups (ICU patients 54.2±9.1 vs healthy controls 61.8±13.1%; P=0.12), and myofibrillar protein synthesis rates increased in both groups (0.028±0.010 vs 0.043±0.018 %/h, main time effect P=0.046, P-interaction=0.584) with lower rates in ICU patients compared to healthy controls (main group effect P=0.001). Incorporation of protein-derived phenylalanine into myofibrillar protein was ~60% lower in ICU patients (0.007±0.007 vs 0.017±0.009 mole % excess (MPE); P=0.007). Conclusion The capacity for critically ill patients to use ingested protein for muscle protein synthesis is markedly blunted despite relatively normal protein digestion and amino acid absorption.
Collapse
Affiliation(s)
- Lee-Anne S Chapple
- Royal Adelaide Hospital, 1062, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia;
| | - Imre W K Kouw
- Royal Adelaide Hospital, 1062, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia.,Maastricht University Medical Centre+, 199236, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, Limburg, Netherlands
| | - Matthew J Summers
- Royal Adelaide Hospital, 1062, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Luke M Weinel
- Royal Adelaide Hospital, 1062, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Samuel Gluck
- Royal Adelaide Hospital, 1062, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Eamon Raith
- Royal Adelaide Hospital, 1062, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Peter Slobodian
- Central Adelaide Local Health Network, 375072, Pharmacy, Adelaide, South Australia, Australia
| | - Stijn Soenen
- The University of Adelaide, 1066, Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia.,Bond University Faculty of Health Sciences and Medicine, 104559, Gold Coast, Queensland, Australia
| | - Adam M Deane
- The University of Melbourne, 2281, Melbourne Medical School, Department of Critical Care, Melbourne, Victoria, Australia
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, Netherlands
| | - Marianne J Chapman
- Royal Adelaide Hospital, Intensive Care Unit, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Adelaide Medical School, Adelaide, South Australia, Australia.,The University of Adelaide, 1066, Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia
| |
Collapse
|