1
|
Omar O, Rydén L, Wamied AR, Al-Otain I, Alhawaj H, Abuohashish H, Al-Qarni F, Emanuelsson L, Johansson A, Palmquist A, Thomsen P. Molecular mechanisms of poor osseointegration in irradiated bone: In vivo study in a rat tibia model. J Clin Periodontol 2024; 51:1236-1251. [PMID: 38798064 DOI: 10.1111/jcpe.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
AIM Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ibrahim Al-Otain
- Radiation Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Lee HS, Jung JI, Hong IK, Jang Y, Kim HB, Kim EJ. Anti-osteoporotic effects of Boswellia serrata gum resin extract in vitro and in vivo. Nutr Res Pract 2024; 18:309-324. [PMID: 38854466 PMCID: PMC11156763 DOI: 10.4162/nrp.2024.18.3.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study evaluated the beneficial effects of an ethanol extract of Boswellia serrata gum resin (FJH-UBS) in osteoporosis. MATERIALS/METHODS MC3T3-E1 osteoblastic cells and RAW 264.7 osteoclastic cells were treated with FJH-UBS. The alkaline phosphatase (ALP) activity, mineralization, collagen synthesis, osteocalcin content, and Runt-related transcription factor 2 (RUNX2) and Osterix expression were measured in MC3T3-E1 cells. The actin ring structures, tartrate-resistant acid phosphatase (TRAP) activity, and the nuclear factor of activator T-cells, cytoplasm 1 (NFATc1) expression were evaluated in RAW 264.7 cells. Ovariectomized ICR mice were orally administered FJH-UBS for eight weeks. The bone mineral density (BMD) and the serum levels of osteocalcin, procollagen 1 N-terminal propeptide (P1NP), osteoprotegerin, and TRAP 5b were analyzed. RESULTS FJH-UBS increased the ALP activity, collagen, osteocalcin, mineralization, and RUNX2 and osterix expression in MC3T3-E1 osteoblastic cells, whereas it decreased the TRAP activity, actin ring structures, and NFATc1 expression in RAW 264.7 osteoclastic cells. In ovariectomy-induced osteoporosis mice, FJH-UBS positively restored all of the changes in the bone metabolism biomarkers (BMD, osteocalcin, P1NP, osteoprotegerin, and TRAP 5b) caused by the ovariectomy. CONCLUSION FJH-UBS has anti-osteoporotic activity by promoting osteoblast activity and inhibiting osteoclast activity in vitro and in vivo, suggesting that FJH-UBS is a potential functional food ingredient for osteoporosis.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - In-Kee Hong
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - YoungSun Jang
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - Hye-Bin Kim
- Health Functional Food Material Development Team, Bio Lab., Frombio Co., Ltd., Yongin, 17108, Korea
| | - Eun Ji Kim
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
3
|
Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res 2023; 13:419-432. [PMID: 35994158 DOI: 10.1007/s13346-022-01222-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primarily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration site/β-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alternative medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.
Collapse
|
4
|
Xiao HH, Zhu YX, Lu L, Zhou LP, Poon CCW, Chan CO, Wang LJ, Cao S, Yu WX, Wong KY, Mok DKW, Wong MS. The Lignan-Rich Fraction from Sambucus williamsii Hance Exerts Bone Protective Effects via Altering Circulating Serotonin and Gut Microbiota in Rats. Nutrients 2022; 14:nu14224718. [PMID: 36432403 PMCID: PMC9692752 DOI: 10.3390/nu14224718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Our previous study revealed that the bone anabolic effects of the lignan-rich fraction (SWCA) from Sambucus williamsii Hance was involved in modulating the metabolism of tryptophan in vivo and inhibiting serotonin (5-HT) synthesis in vitro. This study aimed to determine how SWCA modulates bone metabolism via serotonin in vivo. The effects of SWCA were evaluated by using 4-month-old Sprague-Dawley (SD) ovariectomized rats. The serum levels of 5-HT and kynurenine, the protein expressions of tryptophan hydroxylase 1 (TPH-1) and TPH-2, the genes and proteins related to the 5-HT signaling pathway as well as gut microbiota composition were determined. SWCA treatment alleviated bone loss and decreased serum levels of serotonin, which was negatively related to bone mineral density (BMD) in rats. It suppressed the protein expression of TPH-1 in the colon, and reversed the gene and protein expressions of FOXO1 and ATF4 in the femur in OVX rats, while it did not affect the TPH-2 protein expression in the cortex. SWCA treatment escalated the relative abundance of Antinobacteria and modulated several genera relating to BMD. These findings verified that the bone protective effects of lignans were mediated by serotonin, and provided evidence that lignans might be a good source of TPH-1 inhibitors.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu-Xin Zhu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Lu Lu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Christina Chui-Wa Poon
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li-Jing Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Ying Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: ; Tel.: +852-34008665
| |
Collapse
|
5
|
Wang S, Yuan Y, Lin Q, Zhou H, Tang B, Liu Y, Huang H, Liang B, Mao Y, Liu K, Shi X. Antiosteoporosis effect of tanshinol in osteoporosis animal models: A systematic review and meta-analysis. Front Pharmacol 2022; 13:937538. [PMID: 36034813 PMCID: PMC9399673 DOI: 10.3389/fphar.2022.937538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Osteoporosis (OP) is an age-related bone disease that has emerged as a worldwide public health concern due to its increasing incidence and high disability rate. Tanshinol [D (+) β-3,4-dihydroxyphenyl lactic acid, TS], a water-soluble component extracted from Salvia miltiorrhiza, has proven to be effective in attenuating OP in vitro and in vivo. However, there is insufficient evidence to support its clinical application. Objective: This meta-analysis aimed to investigate available OP animal model studies to demonstrate the antiosteoporosis effects of TS in a systematic manner. Methods: Electronic searches of related studies were conducted in the following databases: EMBASE, PubMed, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese VIP Database, Chinese Biomedical Literature Database, and Wanfang. The retrieval date was January 2022, and there were no time or language restrictions. The CAMARADES 10-item quality checklist was utilized to test the risk of potential bias for each study, and modifications were performed accordingly. The primary outcome was bone mineral density (BMD, which included the femur and lumbar spine); and secondary outcomes were parameters for trabecular bone such as bone volume over total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), conditions of the femur (including bone maximum load and bone elastic load), and markers of bone metabolism (serum osteocalcin, S-OCN). Results: A total of nine studies including 176 rats were chosen for this analysis. Egger’s test revealed the presence of publication bias in various studies regarding the primary outcome. According to this systematic review, TS significantly increased the BMD of the femur (BMD-femur) (SMD = 4.40; 95% CI = 1.61 to 7.19; p = 0.002, I2 = 94.6%), BMD of the lumbar spine (BMD-lumbar) (SMD = 6.390; 95% CI = 2.036 to 10.744; p = 0.004, I2 = 95.9%), BV/TV (SMD = 0.790; 95% CI = 0.376 to 1.204; p = 0.000, I2 = 10.8), Tb.N (SMD = 0.690; 95% CI = 0.309 to 1.071; p = 0.000, I2 = 12%), Tb.Th (SMD = 0.772; 95% CI = 0.410 to 1.134; p = 0.000, I2 = 32.2%), and S-OCN (SMD = 3.13; 95% CI = 0.617 to 5.65; p = 0.015, I2 = 92.3%), while the Tb.Sp level was markedly decreased in OP models in comparison to the controls (SMD = −0.822; 95% CI = −1.207 to −0.437; p = 0.000, I2 = 0%). Moreover, TS treatment was associated with a significant improvement of the bone biomechanical indicators, including bone maximum load (SMD = 0.912; 95% CI = 0.370 to 1.455; p = 0.001, I2 = 40%) and elasticity load (SMD = 0.821; 95% CI = 0.290 to 1.351; p = 0.002, I2 = 0%). Conclusion: Collectively, our findings suggest that TS can improve BMD, bone microarchitecture, bone biomechanics, and S-OCN expression in rats, implying that it could be used clinically in the future. Systematic Review Registration:https://inplasy.com/inplasy-2022-3-0053/, identifier [INPLASY202230053].
Collapse
Affiliation(s)
- Shen Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Yuan
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Lin
- Changping District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Hang Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Binbin Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | - Yang Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bocheng Liang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | - Yingdelong Mao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
| | - Kang Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
- *Correspondence: Xiaolin Shi, ; Kang Liu,
| | - Xiaolin Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, China
- *Correspondence: Xiaolin Shi, ; Kang Liu,
| |
Collapse
|
6
|
Prenylated Isoflavonoids-Rich Extract of Erythrinae Cortex Exerted Bone Protective Effects by Modulating Gut Microbial Compositions and Metabolites in Ovariectomized Rats. Nutrients 2021; 13:nu13092943. [PMID: 34578822 PMCID: PMC8471919 DOI: 10.3390/nu13092943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, found in a wide variety of foods and plants, are considered to play an important role in the prevention and treatment of osteoporosis. Our previous studies demonstrated that Erythrina cortex extract (EC) rich in prenylated isoflavonoids exerted bone protective effects in ovariectomized (OVX) rats. The present study aimed to investigate the interactions of gut microbiota with the EC extract to explore the underlying mechanisms involved in its beneficial effects on bone. Sprague-Dawley female rats of 3-months-old were ovariectomized and treated with EC extract for 12 weeks. EC extract reversed ovariectomy-induced deterioration of bone mineral density and bone microarchitecture as well as downregulated cathepsin K (Ctsk) and upregulated runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP) in the tibia of OVX rats. Its protective effects on bone were correlated with changes in microbial richness and the restorations of several genera. EC increased the serum circulating levels of acetate and propionate in OVX rats. We conclude that the bone protective effects of EC extract were associated with the changes in microbial compositions and serum short chain fatty acids (SCFAs) in OVX rats.
Collapse
|
7
|
Guo D, Zhao M, Xu W, He H, Li B, Hou T. Dietary interventions for better management of osteoporosis: An overview. Crit Rev Food Sci Nutr 2021; 63:125-144. [PMID: 34251926 DOI: 10.1080/10408398.2021.1944975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a public health concern and a cause of bone loss, increased risk of skeletal fracture, and a heavy economic burden. It is common in postmenopausal women and the elderly and is impacted by dietary factors, lifestyle and some secondary factors. Although many drugs are available for the treatment of osteoporosis, these therapies are accompanied by subsequent side effects. Hence, dietary interventions are highly important to prevent osteoporosis. This review was aimed to provide a comprehensive understanding of the roles of dietary nutrients derived from natural foods and of common dietary patterns in the regulation of osteoporosis. Nutrients from daily diets, such as unsaturated fatty acids, proteins, minerals, peptides, phytoestrogens, and prebiotics, can regulate bone metabolism and reverse bone loss. Meanwhile, these nutrients generally existed in food groups and certain dietary patterns also play critical roles in skeletal health. Appropriate dietary interventions (nutrients and dietary patterns) could be primary and effective strategies to prevent and treat osteoporosis across the lifespan for the consumers and food enterprises.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Lu R, Zheng Z, Yin Y, Jiang Z. Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr Res 2021; 64:3666. [PMID: 33447176 PMCID: PMC7778425 DOI: 10.29219/fnr.v64.3666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background Diabetic osteoporosis has become a severe public health problem in the aging societies. Genistein has been reported to play an important role in preventing and treating metabolic diseases via its anti-inflammatory, antioxidant, anti-estrogenic, and estrogen-like functions. Objective We aimed to investigate whether genistein exerts bone-protective effect on diabetic rats induced by 35 mg/kg streptozotocin (STZ) plus a 4-week high-fat diet. Design Sprague–Dawley rats were randomly divided into four groups: (1) control group, (2) type 2 diabetes mellitus (T2DM) model group, (3) T2DM with 10 mg/kg genistein, and (4) T2DM with 30 mg/kg genistein. After an 8-week treatment with genistein, the femurs, tibias, and blood were collected from all rats for further analysis. Results Genistein at 10 mg/kg showed little effect on diabetic osteoporosis, whereas genistein at 30 mg/kg significantly improved glucose and bone metabolisms compared with diabetic rats. Our results showed that 30 mg/kg genistein significantly increased bone mineral density, serum osteocalcin, and bone alkaline phosphatase. Genistein also effectively lowered fasting blood glucose, tartrate-resistant acid phosphatase 5b, tumor necrosis factor-α, interleukin-6, and numbers of adipocytes and osteoclasts. Compared with the T2DM group, protein levels of receptor activator of nuclear factor κB ligand (RANKL) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were decreased, while protein levels of osteoprotegerin (OPG), β-catenin, and runt-related transcription factor 2 (Runx-2) were increased after genistein intervention. Conclusion Genistein could effectively improve abnormal bone metabolism in STZ-induced diabetic rats; the underlying molecular mechanisms might be related to OPG/RANKL, PPAR-γ, and β-catenin/Runx-2 pathways.
Collapse
Affiliation(s)
- Rongrong Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zicong Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Bolouki A, Zal F, Bordbar H. Ameliorative effects of quercetin on folliculogenesis in diabetic mice: a stereological study. Gynecol Endocrinol 2020; 36:864-868. [PMID: 31889455 DOI: 10.1080/09513590.2019.1707796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A high risk of reproductive disorders can be seen in diabetic pregnancy. Reproductive disorders associated with diabetes may result from alterations in the function of the ovary. In this study, we investigated the ameliorative effects of quercetin as a phytoestrogen and antidiabetic agent on the folliculogenesis in diabetic mice. Streptozotocin-induced diabetic mice were treated with 30 mg/kg/day quercetin for four weeks. The volume of ovary, follicles, and corpus luteum were significantly decreased in the diabetic mice. The number of growing follicles (secondary, antral, and Graafian follicles) and corpus luteum was significantly decreased in the diabetic mice. Also, the volume of oocytes was significantly decreased in antral and Graafian follicles. Our results indicated that the administration of quercetin in diabetic mice increased the volume of the ovary and growing follicles, the number of growing follicles and corpus luteum. It also significantly decreased the number of atretic follicles. As a result, it may be concluded that the impaired follicular growth and development caused by hyperglycemia in diabetic mice can be alleviated by quercetin treatment.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Department of Anatomy, Medical School, Shiraz University of Medical Sciences, Shiraz Iran
| |
Collapse
|
10
|
Jiang T, Kong B, Yan W, Wu C, Jiang M, Xu X, Xi X. Network Pharmacology to Identify the Pharmacological Mechanisms of a Traditional Chinese Medicine Derived from Trachelospermum jasminoides in Patients with Rheumatoid Arthritis. Med Sci Monit 2020; 26:e922639. [PMID: 32840241 PMCID: PMC7466841 DOI: 10.12659/msm.922639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study used a network pharmacology approach to identify the pharmacological mechanisms of a traditional Chinese medicine derived from Trachelospermum jasminoides (Lindl.) Lem. in patients with rheumatoid arthritis (RA). MATERIAL AND METHODS Known compounds of T. jasminoides were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the Shanghai Institute of Organic Chemistry of Chinese Academy of Science, Chemistry (CASC) database, and a literature search. Putative targets of identified compounds were predicted by SwissTargetPrediction. RA-related targets were achieved from the Therapeutic Target database, Drugbank database, Pharmacogenomics Knowledgebase, and Online Mendelian Inheritance in Man database. The protein-protein interaction (PPI) network was built by STRING. CluGO was utilized for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis. RESULTS A total of 354 potential targets were predicted for the 17 bioactive compounds in T. jasminoides; 69 of these targets overlapped with RA-related targets. A PPI network was composed and 2 clusters of 59 and 42 nodes each were excavated. GO and KEGG enrichment analysis of the overlapping targets and the 2 clusters was mainly grouped into immunity, inflammation, estrogen, anxiety, and depression processes. CONCLUSIONS Our study illustrated that T. jasminoides alleviates RA through the interleukin-17 signaling pathway, the tumor necrosis factor signaling pathway, and other immune and inflammatory-related processes. It also may exert effects in regulating cell differentiation and potentially has anti-anxiety, anti-depression, and estrogen-like effects.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Bo Kong
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Wei Yan
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Changgui Wu
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Xiaobing Xi
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
11
|
Bezdekova J, Vlcnovska M, Zemankova K, Bacova R, Kolackova M, Lednicky T, Pribyl J, Richtera L, Vanickova L, Adam V, Vaculovicova M. Molecularly imprinted polymers and capillary electrophoresis for sensing phytoestrogens in milk. J Dairy Sci 2020; 103:4941-4950. [PMID: 32307169 DOI: 10.3168/jds.2019-17367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jaroslava Bezdekova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Marcela Vlcnovska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Kristyna Zemankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Romana Bacova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Tomas Lednicky
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5 CZ-62500 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Lucie Vanickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
12
|
Ma Y, Zeng R, Hu QQ, Yan HX, Yang LX, Dong Y, Qu Y. Preventive effects of Polygonum orientale L. on ovariectomy-induced osteoporosis in rats. Climacteric 2020; 23:279-287. [DOI: 10.1080/13697137.2020.1717462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y. Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - R. Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Q.-Q. Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - H.-X. Yan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - L.-X. Yang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Y. Dong
- Department of Respiration, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Y. Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- National Center for Miao Medicine Engineering and Technology, Guizhou Yibai Pharmaceutical Co., Ltd, Guizhou, China
| |
Collapse
|
13
|
Lee JH, Han SS, Lee C, Kim YH, Battulga B. Microarchitectural changes in the mandibles of ovariectomized rats: a systematic review and meta-analysis. BMC Oral Health 2019; 19:128. [PMID: 31242880 PMCID: PMC6595683 DOI: 10.1186/s12903-019-0799-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background This study aimed to examine radiologic microarchitectural changes in the mandibles of ovariectomized (OVX) rats through a systematic review and meta-analysis and to identify factors of the OVX rat model that influence on the bone microstructure. Methods Eligible articles were identified by searching electronic databases, including Embase, Medline, Web of Science, and KoreaMed, for articles published from January 1966 to November 2017. Two reviewers independently performed study selection, data extraction, and quality assessment. The pooled standardized mean difference (SMD) with 95% confidence intervals was calculated using a random-effects model. Subgroup analysis and meta-regression were performed to explore the effect of potential sources on the outcomes. The reliability of the results was assessed by sensitivity analysis and publication bias. Results Of 1160 studies, 16 studies (120 OVX and 120 control rats) were included in the meta-analysis. Compared to the control group, the OVX rats’ trabecular bone volume fraction (SMD = − 2.41, P < 0.01, I2 = 81%), trabecular thickness (SMD = − 1.73, P < 0.01, I2 = 73%) and bone mineral density (SMD = − 0.95, P = 0.01, I2 = 71%) displayed the bone loss consistent with osteoporosis. The trabecular separation (SMD = 1.66, P < 0.01, I2 = 51%) has widen in the OVX mandibular bone in comparison to the control group. However, the trabecular number showed no indication to detect the osteoporosis (SMD = − 0.45, P = 0.38, I2 = 76%). The meta-regression indicated that longer post-OVX periods led to greater changes in bone mineral density (β = − 0.104, P = 0.017). However, the rats’ age at OVX was not linked to bone microstructure change. Conclusions Using meta-regression and sensitivity analysis techniques, heterogeneity across the micro CT studies of OVX-induced osteoporosis was found. The major factors of heterogeneity were the region of interest and post-OVX period. Our assessment can assist in designing experiments to maximize the usefulness of OVX rat model.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Young Hyun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Bulgan Battulga
- School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
14
|
Galanis D, Soultanis K, Lelovas P, Zervas A, Papadopoulos P, Galanos A, Argyropoulou K, Makropoulou M, Patsaki A, Passali C, Tsingotjidou A, Kourkoulis S, Mitakou S, Dontas I. Protective effect of Glycyrrhiza glabra roots extract on bone mineral density of ovariectomized rats. Biomedicine (Taipei) 2019; 9:8. [PMID: 31124454 PMCID: PMC6533940 DOI: 10.1051/bmdcn/2019090208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of this study was to evaluate the potential effect of the methanolic extract of plant Glycyrrhiza glabra roots on bone mineral density and femoral bone strength of ovariectomized rats. Methods: Thirty 10-month-old Wistar rats were randomly separated into three groups of ten, Control, Ovariectomy and Ovariectomy-plus-Glycyrrhiza in their drinking water. Total and proximal tibial bone mineral density was measured in all groups before ovariectomy (baseline) and after 3 and 6 months post ovariectomy. Three-point-bending of the femurs and uterine weight and histology were examined at the end of the study. Results: No significant difference was noted in bone density percentage change of total tibia from baseline to 3 months between Control and Ovariectomy-plus-Glycyrrhiza groups (+5.31% ± 4.75 and +3.30% ± 6.31 respectively, P = non significant), and of proximal tibia accordingly (+5.58% ± 6.92 and +2.61% ± 13.62, P = non significant) demonstrating a strong osteoprotective effect. There was notable difference in percentage change of total tibia from baseline to 6 months between groups Ovariectomy and Ovariectomy-plus-Glycyrrhiza (−13.03% ± 5.11 and −0.84% ± 7.63 respectively, P < 0.005), and of proximal tibia accordingly (−27.9% ± 3.69 and −0.81% ± 14.85 respectively, P < 0.001), confirming the protective effect of Glycyrrhiza glabra extract in preserving bone density of the Ovariectomy-plus-Glycyrrhiza group. Three-point-bending did not reveal any statistically significant difference between Ovariectomy and Ovariectomy-plus-Glycyrrhiza groups. Uterine weights of the Ovariectomy-plus-Glycyrrhiza group ranged between the other two groups with no statistically significant difference to each. Conclusions: Glycyrrhiza glabra root extract notably protected tibial bone mineral density loss in Ovariectomy-plus-Glycyrrhiza rats in comparison with ovariectomized rats, but did not improve biomechanical strength.
Collapse
Affiliation(s)
- Dimitrios Galanis
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Konstantinos Soultanis
- 1st Department of Orthopaedics, National and Kapodistrian University of Athens, Faculty of Medicine, Attiko Hospital, Athens, Greece
| | - Pavlos Lelovas
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Alexandros Zervas
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Panagiotis Papadopoulos
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Antonis Galanos
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Katerina Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Maria Makropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | | | - Christina Passali
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| | - Anastasia Tsingotjidou
- Lab. of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki School of Veterinary Medicine,
| | - Stavros Kourkoulis
- Department of Mechanics, National Technical University of Athens (NTUA), National Technical University of Athens, Greece
| | - Sofia Mitakou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Ismene Dontas
- Laboratory for Research of the Musculoskeletal System (LRMS), School of Medicine, National and Kapodistrian University of Athens, KAT Hospital, Athens, Greece
| |
Collapse
|
15
|
Yan C, Huang D, Shen X, Qin N, Jiang K, Zhang D, Zhang Q. Identification and characterization of a polysaccharide from the roots of Morinda officinalis, as an inducer of bone formation by up-regulation of target gene expression. Int J Biol Macromol 2019; 133:446-456. [PMID: 30991070 DOI: 10.1016/j.ijbiomac.2019.04.084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Morinda officinalis is an important traditional tonic herbal medicine. In the present study, we found that crude polysaccharides extracted from M. officinalis, named MO90, could significantly increase the bone mineral density (BMD) of the whole femur, distal femur, and proximal femur in ovariectomized (OVX) rats. In addition, MO90 decreased the level of bone turnover markers and prevented the deterioration of trabecular microarchitecture. To investigate the fractions responsible for anti-osteoporosis activity, one novel inulin-type fructan, MOW90-1, was isolated from MOP90. Structural analysis indicated that MOW90-1 consists of a backbone of (2→1)-linked-β-D-Fruf, and is terminated with (1→)-linked-α-D-Glcp and (2→)-linked-β-D-Fruf. Furthermore, an in vitro anti-osteoporosis assay indicated that MOW90-1 promoted proliferation, differentiation, and mineralization of MC3T3-E1 cells by up-regulating the expression of runt-related transcription factor 2, osterix, osteopontin, and osteocalcin. In conclusion, our studies provide supporting evidence for future use of this novel M. officinalis fructan as a key nutrient of health products.
Collapse
Affiliation(s)
- Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dong Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xia Shen
- Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
| | - Ningbo Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Keming Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Lotz EM, Cohen DJ, Ellis RA, Wayne JS, Schwartz Z, Boyan BD. Ibandronate Treatment Before and After Implant Insertion Impairs Osseointegration in Aged Rats with Ovariectomy Induced Osteoporosis. JBMR Plus 2019; 3:e10184. [PMID: 31372590 PMCID: PMC6659452 DOI: 10.1002/jbm4.10184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
Excessive decreases in bone volume (BV) and bone mineral density (BMD) can lead to osteoporosis, potentially hindering implant osseointegration. Bisphosphonates are commonly used to combat osteoporosis by slowing osteoclast-mediated resorption; however, functional osteoclasts are integral to bone remodeling and, thus, implant osseointegration, potentially contraindicating bisphosphonate use during implantation. To optimize the use of implant technologies in patients with compromised bone structure and metabolism, we need a more complete understanding of the biological response to surface design. The goal of this study was to assess the effects of osteoporosis and bisphosphonates on osseointegration of titanium (Ti) implants with microstructured surfaces, which have been shown to support osteoblast differentiation in vitro and rapid osseointegration in vivo. Forty, 8-month-old, virgin, female CD Sprague Dawley rats underwent ovariectomy (OVX) or sham (SHOVX) surgery. After 5 weeks, animals were injected subcutaneously with either the bisphosphonate (BIS), Ibandronate (25 µg/kg), or phosphate-buffered saline (PBS) every 25 days. 1 week after the initial injection, Ø2.5mm × 3.5mm microrough (SLA; grit-blasted/acid etched) implants were placed transcortically in the distal metaphysis of each femur resulting in four groups: 1) SHOVX+PBS; 2) SHOVX+BIS; 3) OVX+PBS; and 4) OVX+BIS. After 28d, qualitative properties of the bone and implant osseointegration were assessed using micro-computed tomography (microCT), calcified histomorphometry (Van Gieson's stain), and removal torque testing. microCT revealed decreased bone volume in OVX rats, which was slowed by bisphosphonate treatment. Reduced bone-to-implant contact (BIC) was evident in OVX+PBS compared to SHOVX+PBS. Although BV/TV was increased in OVX+BIS compared to OVX+PBS, bisphosphonate treatment had no effect on BIC. Removal torque testing revealed a higher maximum torque, torsional stiffness, and torsional energy in SHOVX compared to OVX with no effects due to bisphosphonate treatment. Our results show that osseointegration is decreased in osteoporotic animals. Ibandronate halts the progression of osteoporosis but does not enhance osseointegration. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ethan M Lotz
- Department of Biomedical Engineering College of Engineering Virginia Commonwealth University Richmond VA 23284 USA
| | - David J Cohen
- Department of Biomedical Engineering College of Engineering Virginia Commonwealth University Richmond VA 23284 USA
| | - Regan A Ellis
- Department of Biomedical Engineering College of Engineering Virginia Commonwealth University Richmond VA 23284 USA
| | - Jennifer S Wayne
- Department of Biomedical Engineering College of Engineering Virginia Commonwealth University Richmond VA 23284 USA
| | - Zvi Schwartz
- Department of Biomedical Engineering College of Engineering Virginia Commonwealth University Richmond VA 23284 USA.,Department of Periodontics University of Texas Health Science Center at San Antonio San Antonio TX 78229 USA
| | - Barbara D Boyan
- Department of Biomedical Engineering College of Engineering Virginia Commonwealth University Richmond VA 23284 USA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
17
|
Black Rice ( Oryza sativa L.) Fermented with Lactobacillus casei Attenuates Osteoclastogenesis and Ovariectomy-Induced Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5073085. [PMID: 30911544 PMCID: PMC6399567 DOI: 10.1155/2019/5073085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/16/2018] [Accepted: 01/31/2019] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to investigate the antiosteoclastogenic effects of black rice (Oryza sativa L.) fermented with Lactobacillus casei (LAB) in RANKL-induced RAW macrophage cells and its antiosteoporosis activity against ovariectomy-induced osteoporosis in rats. LAB extract (LABE) treatment attenuated receptor activator of nuclear factor-kappa B (NF-κB) ligand-induced osteoclastic differentiation in RAW cells by inhibiting intercellular reactive oxygen species generation and downregulating the activation of mitogen-activated protein kinases and NF-κB, leading to the downregulation of c-Fos and expression of nuclear factor of activated T cells c1. This consequently suppressed the expression of osteoclast-specific genes including those for cathepsin K, tartrate-resistant acid phosphatase, calcitonin receptor, and integrin β3. Oral administration of LABE protected against ovariectomy-induced bone loss by significantly inhibiting bone architecture alterations and improving serum bone turnover markers in ovariectomized rats. The findings suggest that the antiosteoporotic activity of LABE may be derived from its antiosteoclastic and anti-bone-resorptive activities. LABE has potential as a promising functional material or substrate to prepare protective agents for osteoporosis and osteoclast-mediated bone diseases.
Collapse
|
18
|
Kim SM, Lee HS, Jung JI, Lim SM, Lim JH, Ha WH, Jeon CL, Lee JY, Kim EJ. Effect of isoflavone-enriched whole soy milk powder supplementation on bone metabolism in ovariectomized mice. Nutr Res Pract 2018; 12:275-282. [PMID: 30090164 PMCID: PMC6078863 DOI: 10.4162/nrp.2018.12.4.275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/OBJECTIVE There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.
Collapse
Affiliation(s)
- So Mi Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jae In Jung
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Su-Min Lim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Ji Hoon Lim
- Institute of Food Processing Technology, Uwell Bio Co. Ltd., Gangwon 25451, Korea
| | - Wang-Hyun Ha
- Institute of Food Processing Technology, Uwell Bio Co. Ltd., Gangwon 25451, Korea
| | - Chang Lae Jeon
- Institute of Food Processing Technology, Uwell Bio Co. Ltd., Gangwon 25451, Korea
| | - Jae-Yong Lee
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea.,Department of Biochemistry, College of Medicine, Hallym University, Gangwon 24252, Korea
| | - Eun Ji Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| |
Collapse
|
19
|
Wang F, Zhao Y, Liu Y, Yu P, Yu Z, Wang J, Xue C. Peptides from Antarctic krill (Euphausia superba
) ameliorate senile osteoporosis via activating osteogenesis related BMP2/Smads and Wnt/β-catenin pathway. J Food Biochem 2017. [DOI: 10.1111/jfbc.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Yanlei Zhao
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Yuntao Liu
- Shandong Oriental Ocean Sci-tech Co., Ltd.; Yantai Shandong Province 264003 China
| | - Peng Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Zhe Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Jingfeng Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| |
Collapse
|
20
|
Qi S, Zheng H. Combined Effects of Phytoestrogen Genistein and Silicon on Ovariectomy-Induced Bone Loss in Rat. Biol Trace Elem Res 2017; 177:281-287. [PMID: 27785742 DOI: 10.1007/s12011-016-0882-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
This study was performed to evaluate the effect of concomitant supplementation of genistein and silicon on bone mineral density and bone metabolism-related markers in ovariectomized rat. Three-month-old Sprague Dawley female rats were subjected to bilateral ovariectomy (OVX) or sham surgery, and then the OVX rats were randomly divided into four groups: OVX-GEN, OVX-Si, OVX-GEN-Si, and OVX. Genistein and silicon supplementation was started immediately after OVX and continued for 10 weeks. In the OVX-GEN group, 5 mg genistein per gram body weight was injected subcutaneously. The OVX-Si group was given soluble silicon daily in demineralized water (Si 20 mg/kg body weight/day). The OVX-GEN-Si group was given subcutaneous injections of 5 mg genistein per gram body weight, at the same time, given soluble silicon daily (Si 20 mg/kg body weight/day). The results showed that the genistein supplementation in the OVX rats significantly prevented the loss of uterus weight; however, the silicon supplementation showed no effect on the uterus weight loss. The lumbar spine and femur bone mineral density was significantly decreased after OVX surgery; however, this decrease was inhibited by the genistein and/or silicon, and the BMD of the lumbar spine and femur was the highest in the OVX-GEN-Si-treated group. Histomorphometric analyses showed that the supplementation of genistein and/or silicon restored bone volume and trabecular thickness of femoral trabecular bone in the OVX group. Besides, the treatment with genistein and silicon for 10 weeks increased the serum levels of calcium and phosphorus in the OVX rats; serum calcium and serum phosphorus in the OVX-GEN-Si group were higher than those in the OVX-GEN and OVX-Si group (P < 0.05). At the same time, the treatment with genistein and/or silicon decreased serum alkaline phosphatase (ALP) and osteocalcin, which were increased by ovariectomy; serum ALP and osteocalcin in the OVX-GEN-Si group were lower than those in the OVX-GEN and OVX-Si groups (P < 0.05). The results above indicate that genistein and silicon have synergistic effects on bone formation in ovariectomized rats.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi Sci-Tech University, Chaoyang Road, Hantai District, Hanzhong, Shaanxi, 723000, China
| | - Hongxing Zheng
- College of Biological Science and Engineering, Shaanxi Sci-Tech University, Hanzhong, Shaanxi, 723000, China.
| |
Collapse
|
21
|
Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia. Pharmacol Rep 2017; 69:1113-1119. [PMID: 29031689 DOI: 10.1016/j.pharep.2017.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/22/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Postmenopausal osteoporosis and osteoporotic fractures constitute an increasing problem in developing countries. Kaempferol, isolated from seeds of Cuscuta chinensis, is an active flavonoid inhibiting in vitro osteoclast activity. The aim of the presented research was an assessment of kaempferol effect on estrogen-deficiency-induced bone structure disturbances in rats. METHODS The study was performed on 24 Wistar female rats divided into 3 groups: SHAM - rats undergoing a "sham" surgery, OVX-C - control group of animals that underwent ovariectomy, OVX-K - rats undergoing ovariectomy and receiving kaempferol for 8 weeks (from day 56 to day 112). RESULTS In the OVX-K group, contrary to the OVX-C one, there was no significant decrease in femoral bone mineral density (BMD). A significant increase in Young's modulus was observed in the OVX-K group compared to the OVX-C (15.33±2.51GPa vs. 11.14±1.93GPa, p<0.05). A decreased bone turnover was detected in the OVX-K group. Tissue volume ratio (BV/TV) and trabecular bone perimeter were increased in the OVX-K group compared to the OVX-C one (0.241±0.037 vs. 0.170±0.022, p<0.05 and 15.52±2.78mm vs. 9.67±3.07mm, p<0.05, respectively). CONCLUSION Kaempferol has a beneficial influence on estrogen-deficiency-induced disturbances of bone structure in rats.
Collapse
|
22
|
Okubo R, Sanada LS, Castania VA, Louzada MJQ, de Paula FJA, Maffulli N, Shimano AC. Jumping exercise preserves bone mineral density and mechanical properties in osteopenic ovariectomized rats even following established osteopenia. Osteoporos Int 2017; 28:1461-1471. [PMID: 28124728 DOI: 10.1007/s00198-017-3905-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
UNLABELLED The effects of jump training on bone structure before and after ovariectomy-induced osteopenia in rats were investigated. Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. This exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established. INTRODUCTION The present study investigated the effects of jump training on bone structure before and after ovariectomy-induced osteopenia in 80 10-week-old Wistar rats. METHODS Forty rats (prevention program) were randomly allocated to one of four equal groups (n = 10): sham-operated sedentary (SHAM-SEDp), ovariectomized (OVX) sedentary (OVX-SEDp), sham-operated exercised (SHAM-EXp), and OVX exercised (OVX-EXp). SHAM-EXp and OVX-EXp animals began training 3 days after surgery. Another 40 rats (treatment program) were randomly allocated into another four groups (n = 10): sham-operated sedentary (SHAM-SEDt), OVX sedentary (OVX-SEDt), sham-operated exercised (SHAM-EXt), and OVX exercised (OVX-EXt). SHAM-EXt and OVX-EXt animals began training 60 days after surgery. The rats in the exercised groups jumped 20 times/day, 5 days/week, to a height of 40 cm for 12 weeks. At the end of the experimental period, serum osteocalcin, follicle-stimulating hormone (FSH) dosage, dual X-ray absorptiometry (DXA), histomorphometry, and biomechanical tests were analyzed. RESULTS The OVX groups showed higher values of FSH and body weight (p < 0.05). DXA showed that jump training significantly increased bone mineral density of the femur and fifth lumbar vertebra (p < 0.05). The stiffness of the left femur and fifth lumbar vertebra in the exercised groups was greater than that of the sedentary groups (p < 0.05). Ovariectomy induced significant difference in bone volume (BV/TV, percent), trabecular separation (Tb.Sp, micrometer), and trabecular number (Tb.N, per millimeter) (p < 0.05) compared to sham operation. Jump training in the OVX group induced significant differences in BV/TV, Tb.Sp, and Tb.N and decreased osteoblast number per bone perimeter (p < 0.05) compared with OVX nontraining, in the prevention groups. Osteocalcin dosage showed higher values in the exercised groups (p < 0.05). CONCLUSIONS Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. Jump training is effective to prevent bone loss after ovariectomy even when osteopenia is already established.
Collapse
Affiliation(s)
- R Okubo
- Department of Physiotherapy, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil.
| | - L S Sanada
- Department of Physiotherapy, Santa Catarina State University, Florianópolis, Santa Catarina, Brazil
| | - V A Castania
- Department of Biomechanics, Medicine and Rehabilitation of Locomotor Apparatus, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - M J Q Louzada
- Department of Animal Support, Production and Health, School of Veterinary Medicine, Sao Paulo State University, Araçatuba, São Paulo, Brazil
| | - F J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - N Maffulli
- Faculty of Medicine and Surgery, Department of Musculoskeletal Disorders, University of Salerno, Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London, England, E1 4DG, UK
| | - A C Shimano
- Department of Biomechanics, Medicine and Rehabilitation of Locomotor Apparatus, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
Komine C, Nakajima S, Kondo Y, Horii Y, Yoshida M, Kawaguchi M. Effects of neonatal 17α-ethinyloestradiol exposure on female-paced mating behaviour in the rat. J Appl Toxicol 2017; 37:996-1003. [PMID: 28176338 DOI: 10.1002/jat.3449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Correct perinatal oestrogen levels are critical for sexual differentiation. For example, perinatal exposure to oestrogen causes masculinization and defeminization of the brain in female rats and also induces delayed effects after maturation characterized by early onset of abnormal oestrus cycling. However, the mechanisms underlying the above effects of oestrogen remain to be fully determined. 17α-ethinyloestradiol (EE), a common synthetic oestrogen widely used in oral contraceptives, binds specifically to oestrogen receptors. In this study, we demonstrated the effects of a single neonatal injection of high- or low-dose EE on reproductive behaviours. Female rats within 24 h after birth were subcutaneously injected with sesame oil, EE (0.02, 2 mg kg-1 ) and 17β-oestradiol (E2 ) (20 mg kg-1 ). Between 11 and 15 weeks of age, sexual behaviour was tested twice in a paced mating situation. Latency to enter, lordosis and soliciting behaviour were recorded. Both high-dose EE- and E2 -treated females showed a significantly lower lordosis quotient, decreased soliciting behaviours, increased rejection and fighting numbers. Accessibility to males was also delayed by neonatal E2 exposure, although it was shortened by high-dose EE exposure. In contrast, low-dose EE-treated females did not exhibit impaired sexual behaviour. These results suggest that single neonatal exposure to a high dose of EE or E2 disturbs the normal development of the female brain, resulting in impaired sexual behaviours in a female-paced mating situation. Besides, the differences noted between high-dose EE- and E2 -treated females might be caused by different affinities of the oestrogen receptors, metabolic rates or mechanisms of action. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiaki Komine
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Nakajima
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo, Japan
| | - Yasuyuki Horii
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Midori Yoshida
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Maiko Kawaguchi
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
24
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Chawalitpong S, Sornkaew N, Suksamrarn A, Palaga T. Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway. Eur J Pharmacol 2016; 788:351-359. [DOI: 10.1016/j.ejphar.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
|
26
|
Estrogenic Receptor-Functionalized Magnetite Nanoparticles for Rapid Separation of Phytoestrogens in Plant Extracts. Appl Biochem Biotechnol 2016; 181:925-938. [PMID: 27682858 DOI: 10.1007/s12010-016-2259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
With growing interests of phytoestrogens, many natural phytochemicals extracted from diverse plant species have been explored for their estrogenic-like activities and potential applications. In this work, a simple and rapid separation of phytoestrogenic compounds from crude plant extracts was purposed using magnetic nanoparticles (MNPs) of Fe3O4 immobilized with the ligand-binding domain (LBD) of estrogen receptor alpha (ERα). The recombinant LBD-ERα peptide of 40 kDa was produced and subsequently covalently linked to MNPs. One milligram of the LBD-ERα-immobilized MNPs demonstrated a specific binding to the standard 17β-estradiol (E2) of 3.37 nmol and 91.3-100 % of the bound E2 were subsequently recovered. LBD-ERα-immobilized MNPs could separate phytoestrogens of 4.6 nmol E2-equivalent activity from a 1-mg crude extract of Asparagus racemosus. The produced MNPs showed no separation yield when were applied to the negative controls, the crude extract of radish (Raphanus sativus), and the standard progesterone (P4). Thin-layer chromatography demonstrated a single phytochemical band of the separated phytoestrogens, which exhibited the activity to promote MCF-7 cell proliferation at 4.7 folds greater than the crude A. racemosus extract. The results of this work demonstrated a simple method to specifically separate phytoestrogens from crude plant extracts via the LBD-ERα-immobilized MNPs.
Collapse
|
27
|
Garg S, Lule VK, Malik RK, Tomar SK. Soy Bioactive Components in Functional Perspective: A Review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1136936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sheenam Garg
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhao Kisanrao Lule
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Ravinder Kumar Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
28
|
Wang F, Wang Y, Zhao Y, Zhan Q, Yu P, Wang J, Xue C. Sialoglycoprotein Isolated from Eggs of Carassius auratus Ameliorates Osteoporosis: An Effect Associated with Regulation of the Wnt/β-Catenin Pathway in Rodents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2875-2882. [PMID: 27023001 DOI: 10.1021/acs.jafc.5b06132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the current study, ovariectomized (OVX) rats and the senescence-accelerated mouse strain P6 (SAMP6) were employed to establish models of postmenopausal osteoporosis and senile osteoporosis, respectively. The effects of treatment with sialoglycoprotein isolated from the eggs of Carassius auratus (Ca-SGP) on these two types of osteoporosis were investigated in vivo. Results showed that Ca-SGP significantly increased bone mineral density, ameliorated trabecular bone microstructure, and improved bone biomechanical properties in both OVX rats and SAMP6. The osteogenesis related Wnt/β-catenin pathway was targeted to study the underlying mechanism of Ca-SGP activity. In postmenopausal osteoporosis, Ca-SGP suppressed the activation of Wnt/β-catenin signal via down-regulating the expression of key genes including LRP5, β-catenin, and Runx2, suggesting that overactive osteogenesis was controlled by Ca-SGP. The bone formation was sharply weakened in senile osteoporosis, whereas Ca-SGP treatment promoted osteoblast activity by stimulating the Wnt/β-catenin signal. In conclusion, Ca-SGP ameliorated these two types of osteoporosis by normalizing bone anabolism.
Collapse
Affiliation(s)
- Fei Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yiming Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yanlei Zhao
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Qiping Zhan
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Peng Yu
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| |
Collapse
|
29
|
Nam SY, Yoou MS, Kim HM, Jeong HJ. Efficacy of proline in the treatment of menopause. Exp Biol Med (Maywood) 2016; 241:611-9. [PMID: 26830682 DOI: 10.1177/1535370216629011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022] Open
Abstract
The amino acids in the placenta have multiple functions; however, the therapeutic effects of proline remain poorly for relief postmenopausal symptoms. The aim of present study was to evaluate the effects of proline in the treatment of menopause using in vitro and in vivo models. We assessed the therapeutic effects and regulatory mechanisms of proline by using MCF-7 estrogen-dependent cells, MG63 osteoblast cells, and ovariectomized mice model. An in vivo study was carried out in eight-week-old sham and ovariectomized group. The ovariectomized mouse was further subdivided into two groups administered orally with 17β-estradiol or proline (10 mg/kg/day) for eight weeks. Proline significantly increased cell proliferation and Ki-67 levels in MCF-7 cells and enhanced cell proliferation, alkaline phosphatase activity, extracellular signal-regulated kinase phosphorylation, and glutamyl-prolyl-tRNA synthetase activation in MG63 cells. The estrogen receptor-β and estrogen-response elements luciferase activity were significantly increased by proline in MCF-7 and MG63 cells. In ovariectomized mice, oral administration of proline (10 mg/kg/day) for eight weeks significantly reduced body and vaginal weights. Proline also significantly increased serum estradiol and alkaline phosphatase levels, whereas serum luteinizing hormone was decreased by proline. In addition, detailed microcomputed tomography analysis showed that the proline notably enhanced bone mineral density, trabecular bone volume, and trabecular number in ovariectomized mice. Those findings implied that proline can be a promising candidate for the treatment of menopause.
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Myoung-Schook Yoou
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Technology and Inflammatory Disease Research Center, Hoseo University, Asan, Chungnam 336-795, Republic of Korea
| |
Collapse
|
30
|
Kim MH, Kim HM, Jeong HJ. Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause. Amino Acids 2015; 48:791-800. [PMID: 26563333 DOI: 10.1007/s00726-015-2127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023]
Abstract
Recently, the placenta mesotherapy has been widely used to treat menopause. Placenta contains amino acids, peptides, minerals, and estrogen. Here, we investigated the estrogen-like osteoprotective effects of glycine (a main ingredient of placenta) in in vitro and in vivo models of menopause. We assessed the effect of glycine on MG-63 osteoblast cell line, MCF-7 estrogen-dependent cell line, and ovariectomized (OVX) mice. Glycine significantly increased the MG-63 cell proliferation in a dose-dependent manner. Activity of alkaline phosphatase (ALP) and phosphorylation of extracellular-signal-regulated kinase were increased by glycine in MG-63 cells. Glycine also increased the BrdU-incorporation and Ki-67 mRNA expression in MCF-7 cells. Glycine induced the up-regulation of estrogen receptor-β mRNA expression and estrogen-response element-luciferase activity in MG-63 and MCF-7 cells. In OVX mice, glycine was administered orally at a daily dose of 10 mg/kg per day for 8 weeks. Glycine resulted in the greatest decrease in weight gain caused by ovariectomy. Meanwhile, vaginal weight reduced by ovariectomy was increased by glycine. Glycine significantly increased the ALP activity in OVX mice. MicroCT-analysis showed that glycine significantly enhanced bone mineral density, trabecular number, and connectivity density in OVX mice. Moreover, glycine significantly increased the serum 17β-estradiol levels reduced by ovariectomy. Glycine has an estrogen-like osteoprotective effect in menopause models. Therefore, we suggest that glycine may be useful for the treatment of menopause.
Collapse
Affiliation(s)
- Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Technology and Biochip Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do, 336-795, Republic of Korea.
| |
Collapse
|
31
|
Han NR, Kim NR, Kim HM, Jeong HJ. Cysteine Prevents Menopausal Syndromes in Ovariectomized Mouse. Reprod Sci 2015; 23:670-9. [PMID: 26494699 DOI: 10.1177/1933719115612133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cysteine (Cys) is well known to be involved in oxidation-reduction reactions, serving as a source of sulfides in the body. Amino acids are known to improve menopausal symptoms and significantly reduce morbidity. This study aims to find an unrevealed effect of Cys with estrogenic and osteogenic actions. Ovariectomized (OVX) mice were treated with Cys daily for 8 weeks. Estrogen-related and osteoporosis-related factors were analyzed in the vagina, serum, and tibia. Cys was treated in estrogen receptor (ER)-positive human osteoblast-like MG-63 cells and ER-positive human breast cancer Michigan Cancer Foundation-7 (MCF-7) cells. Cysteine administration ameliorated overweightness of the body and vaginal atrophy in the OVX mice. Cysteine increased the levels of alkaline phosphatase (ALP) and 17β-estradiol in the serum of the OVX mice and improved the bone mineral density in the OVX mice. In MG-63 cells, Cys increased the proliferation, ERβ messenger RNA (mRNA) expression, and estrogen response element (ERE) activity. Cysteine increased the ALP activity and the phosphorylation of extracellular signal-regulated kinase. In MCF-7 cells, Cys also increased the proliferation, ERβ mRNA expression, and ERE activity. Taken together, these results demonstrated that Cys has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. The novel insights gained here strongly imply the potential use of Cys as a new agent for postmenopausal women.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea
| | - Na-Rae Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea
| | - Hyun-Ja Jeong
- Department of Food Technology and Department of Nanobio Tronics, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
32
|
Pezzilli R, Melzi d'Eril GV, Barassi A. Markers of Bone Metabolism in Patients With Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma. Medicine (Baltimore) 2015; 94:e1754. [PMID: 26496293 PMCID: PMC4620801 DOI: 10.1097/md.0000000000001754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are no studies comparing some of the most important markers, such as vitamin D, parathormone, osteocalcin, bone alkaline phosphatase, and calcium, in patients with chronic benign and malignant pancreatic diseases. Our objective was to comparatively evaluate serum markers of bone metabolism in patients with chronic pancreatitis and in those with ductal pancreatic adenocarcinoma. Sixty-three consecutive subjects were studied: 30 patients with a firm diagnosis of chronic pancreatitis and 33 having histologically confirmed pancreatic adenocarcinoma. Serum 25-hydroxyvitamin D, bone alkaline phosphatase, osteocalcin, parathormone, and calcium were determined using commercially available kits. Taking into consideration the clinical variables of all 63 patients studied, 25-hydroxyvitamin D was inversely correlated with only the body mass index (P = 0.007), whereas it was not correlated with age (P = 0.583) or fecal elastase-1 concentrations (P = 0.556). Regarding the other substances studied, parathormone was positively correlated with only the age of the patients (P = 0.015). Of the 5 substances studied, only bone alkaline phosphates were significantly different (P < 0.001) between patients with chronic pancreatitis and those with pancreatic ductal adenocarcinoma. Within the 2 groups of patients, the 23 patients with chronic pancreatitis without diabetes mellitus had serum concentrations of 25-hydroxyvitamin D significantly lower (P = 0.045) than those with chronic pancreatitis having diabetes mellitus, whereas smokers with pancreatic ductal adenocarcinoma had serum concentrations of calcium significantly higher (P < 0.001) as compared to nonsmokers. Altered bone metabolism seems to be associated with chronic diseases of the pancreas; however, the mechanism should be better elucidated.
Collapse
Affiliation(s)
- Raffaele Pezzilli
- From the Pancreas Unit, Department of Digestive System, Sant'Orsola-Malpighi Hospital, Bologna, Italy (RP); and Department of Health Sciences, University of Milan, Milan, Italy Bologna, Italy (ME, AB)
| | | | | |
Collapse
|
33
|
Sialoglycoproteins isolated from the eggs of Carassius auratus prevents osteoporosis by suppressing the activation of osteoclastogenesis related NF-κB and MAPK pathways. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
34
|
Chrzanowska AM, Poliwoda A, Wieczorek PP. Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples. J Chromatogr A 2015; 1392:1-9. [DOI: 10.1016/j.chroma.2015.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022]
|