1
|
Dridi I, Soulimani R, Bouayed J. Chronic depression-like phenotype in male offspring mice following perinatal exposure to naturally contaminated eels with a mixture of organic and inorganic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:156-165. [PMID: 32297116 DOI: 10.1007/s11356-020-08799-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Previously, we demonstrated that maternal exposure to high, intermediate, or lowly contaminated European eels with a mixture of chemicals, during pregnancy and lactation, resulted in adult despair-like behavior, selectively in male offspring mice. Here, we investigate if depression-like behavior in offspring males was transient or permanent by monitoring immobility behavior, a measure of behavioral despair, at three distinct stages of life, including young adult (post-natal day (PND) 55), mature adult (PND 200) and middle (PNDs 335-336) age, in the forced swimming (FST) and the tail suspension (TST) tests. Oxidative stress markers including malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were evaluated in the hippocampus, prefrontal cortex, and cerebellum of middle-aged animals. Findings showed a significant enhancement of immobility behavior in the TST performed at young adult age (all p < 0.05) in the FST carried out at mature adult age (all p < 0.001) and in both behavioral tests realized at middle age (all p < 0.05, except one p = 0.06) in mice perinatally exposed to eels compared with non-exposed controls. Antioxidant-related enzyme activities, including SOD and CAT, were only elevated in the hippocampus of middle-aged males perinatally exposed to the two more polluted eels (all p < 0.05). Further, lipid peroxidation, assessed by MDA levels, was not found to be differentially regulated in the selected areas of middle-aged brains of exposed mice (all p > 0.05). Collectively, this suggested limited oxidative metabolism disturbances in middle-aged brains exposed to eels. In summary, our results highlighted that offspring males perinatally exposed to naturally contaminated reared and river eels with persistent organic pollutants (POPs) and heavy metals displayed chronic depression-like phenotype. As extrapolation of data to humans should be done with precaution, retrospective and prospective epidemiological studies are needed to clarify this potential relationship, stressed in our animal model, between maternal polluted fish consumption and chronically low mood in offspring.
Collapse
Affiliation(s)
- Imen Dridi
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Rachid Soulimani
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Jaouad Bouayed
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France.
| |
Collapse
|
2
|
Jardim NS, Müller SG, Pase FM, Nogueira CW. Nuclear Factor [Erythroid-derived 2]-like 2 and Mitochondrial Transcription Factor A Contribute to Moderate-intensity Swimming Effectiveness against Memory Impairment in Young Mice Induced by Concomitant Exposure to a High-calorie Diet during the Early Life Period. Neuroscience 2020; 452:311-325. [PMID: 33246070 DOI: 10.1016/j.neuroscience.2020.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Increased energy food consumption during early-life has been associated with memory impairment. Swimming training has been reported to improve memory processes in rodent models. This study aimed to evaluate whether moderate-intensity swimming training counteracts learning and memory impairment in young mice fed a high-calorie diet during the early-life period. The contribution of hippocampal oxidative stress, as well as nuclear factor [erythroid-derived 2]-like 2/Kelch-like ECH-associated protein (NRF2/Keap-1/HO-1) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha/mitochondrial transcription factor A (PCG-1α/mtTFA) signaling, in memory effects was also investigated. Three-week-old male Swiss mice received a high-calorie diet (20% fat; 20% carbohydrate enriched) or a standard diet from 21 to 49 postnatal days. Mice performed a moderate-intensity swimming protocol (5 days/week) and behavioral tests predictive of memory function. Mice fed a high-calorie diet and subjected to the swimming protocol performed better on short- and long-term spatial and object recognition memory tests than those fed a high-calorie diet. The swimming protocol modulated the hippocampal NRF2/Keap-1/HO-1 and mtTFA pathways in mice fed a high-calorie diet. Swimming training positively affected location and long-term memory, fat mass content, as well as NRF2/Keap-1/HO-1 and mtTFA proteins of control-diet-fed mice. In conclusion, a moderate-intensity swimming training evoked an adaptive response in mice fed a high-calorie diet by restoring different types of memory-impaired and hippocampal oxidative stress as well as upregulated the NRF2/Keap-1/HO-1 and mtTFA pathways.
Collapse
Affiliation(s)
- Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Sabrina Grendene Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Flávia Matos Pase
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
3
|
Neurobehavioral and oxidative stress alterations following methylmercury and retinyl palmitate co-administration in pregnant and lactating rats and their offspring. Neurotoxicology 2018; 69:164-180. [DOI: 10.1016/j.neuro.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
|
4
|
Espitia-Pérez P, Albino SM, da Rosa HT, Silveira AK, Espitia-Pérez L, Brango H, Moraes DP, Hermann PRS, Mingori M, Barreto F, Kunzler A, Gelain DP, Schnorr CE, Moreira JCF. Effects of methylmercury and retinol palmitate co-administration in rats during pregnancy and breastfeeding: Metabolic and redox parameters in dams and their offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:603-615. [PMID: 30031321 DOI: 10.1016/j.ecoenv.2018.06.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitous low-dose methylmercury (MeHg) exposure through an increased fish consumption represents a global public health problem, especially among pregnant women. A plethora of micronutrients presented in fish affects MeHg uptake/distribution, but limited data is available. Vitamin A (VitA), another fish micronutrient is used in nutritional supplementation, especially during pregnancy. However, there is no information about the health effects arising from their combined exposure. Therefore, the present study aimed to examine the effects of both MeHg and retinyl palmitate administered on pregnant and lactating rats in metabolic and redox parameters from dams and their offspring. Thirty Wistar female rats were orally supplemented with MeHg (0,5 mg/kg/day) and retinyl palmitate (7500 µg RAE/kg/day) via gavage, either individually or in combination from the gestational day 0 to weaning. For dams (150 days old) and their offspring (31 days old), glycogen accumulation (hepatic and cardiac) and retinoid contents (plasma and liver) were analyzed. Hg deposition in liver tissue was quantified. Redox parameters (liver, kidney, and heart) were evaluated for both animals. Cytogenetic damage was analyzed with micronucleus test. Our results showed no general toxic or metabolic alterations in dams and their offspring by MeHg-VitA co-administration during pregnancy and lactation. However, increased lipoperoxidation in maternal liver and a disrupted pro-oxidant response in the heart of male pups was encountered, with apparently no particular effects in the antioxidant response in female offspring. GST activity in dam kidney was altered leading to possible redox disruption of this tissue with no alterations in offspring. Finally, the genomic damage was exacerbated in both male and female pups. In conclusion, low-dose MeHg exposure and retinyl palmitate supplementation during gestation and lactation produced a potentiated pro-oxidant effect, which was tissue-specific. Although this is a pre-clinical approach, we recommend precaution for pregnant women regarding food consumption, and we encourage more epidemiological studies to assess possible modulations effects of MeHg-VitA co-administration at safe or inadvertently used doses in humans, which may be related to specific pathologies in mothers and their children.
Collapse
Affiliation(s)
- Pedro Espitia-Pérez
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Suelen Marin Albino
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helen Tais da Rosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Carrera 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Hugo Brango
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Pompéu Moraes
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paolla Rissi Silva Hermann
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Moara Mingori
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano Barreto
- Laboratório de Análise de Resíduos de Pesticidas e Medicamentos Veterinários (RPM), Laboratório Nacional Agropecuário RS, Estrada da Ponta Grossa 3036, CEP: 91780-580 Porto Alegre, Rio Grande do Sul, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Schnorr
- Departamento de Civil y Ambiental, Programa de Ingeniería Ambiental, Universidad de la Costa, Calle 58 #55- 66, Barranquilla, Atlántico, Colombia
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Hu X, Wang J, Zhang L, Zhang Q, Duan X, Zhang Y. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation. Brain Res 2018; 1696:49-55. [PMID: 29870695 DOI: 10.1016/j.brainres.2018.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/09/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022]
Abstract
Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1 h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24 h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingxian Wang
- Department of Anesthesiology, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China
| | - Li Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiquan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Karkaba A, Soualeh N, Soulimani R, Bouayed J. Perinatal effects of exposure to PCBs on social preferences in young adult and middle-aged offspring mice. Horm Behav 2017; 96:137-146. [PMID: 28935448 DOI: 10.1016/j.yhbeh.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
Abstract
In social species, social interactions between conspecifics constitute a fundamental component to establish relations, provide best chances to reproduce, and even improve survival rates. In this study, a three-chambered social approach test was used to estimate the level of sociability and level of preference for social novelty in both male and female young adult (postnatal day (PND) 50) and middle-aged (PND 330) offspring mice (n=10 per group) that were perinatally exposed to a mixture of six polychlorinated biphenyls (PCBs), 28, 52, 101, 138, 153, and 180, at environmentally low doses (10 and 1000ng/kg b.w. for dams during gestation and lactation), a profile that closely mimics human exposure to contaminated fish. Our results showed that PCBs bidirectionally modulated social preferences in offspring mice, and the effects were sex and age dependent. However, increased levels of social interactions were rather frequently detected in both assays of the three-chambered test. Reduced social interaction was only induced in 1000ng/kg PCB-exposed middle-aged males, which exhibited similar preferences to social and non-social stimuli when compared to middle-aged controls. Furthermore, results showed that plasma levels of both corticosterone and acetylcholinesterase activity were higher in all PCB-exposed middle-aged males and females than in their control counterparts. In summary, although the effects of PCBs were only of moderate magnitude, our results suggest that a PCB mixture can act as an endocrine disruptor in offspring mice, disturbing the formation of normal social habits.
Collapse
Affiliation(s)
- Alaa Karkaba
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Nidhal Soualeh
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Rachid Soulimani
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Jaouad Bouayed
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France.
| |
Collapse
|
7
|
Soualeh N, Soulimani R, Bouayed J. Hippocampal-dependent memory deficit induced by perinatal exposure to polutted eels in middle-aged offspring mice: Sex differential effects. Toxicol Lett 2017; 280:247-258. [PMID: 28847518 DOI: 10.1016/j.toxlet.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
The effects of perinatal exposure to low, intermediate, or highly polluted eels on neonatal, postnatal, adult and middle-aged brain inflammation, and on cognitive performances of middle-aged offspring mice were compared to those of offspring controls. Inflammatory markers in microglia were assessed in offspring on the postnatal days-PNDs 1, 21, 100 and 330. Activated p38MAPK, ERK-1/2 and p65, and acetylcholine levels were assessed in the middle-aged hippocampus. Plasma myeloperoxidase and corticosterone levels were evaluated at PND 330. Learning and its retention, and working memory in middle-aged offspring were assessed using the Morris water maze, and Y-maze. Our results showed enhanced microglia production of inflammatory markers across the lifespan of male as well as female exposed offspring. Inflammation and increased p38 MAPK activation were detected in the exposed middle-aged hippocampus of both exposed sexes. Significant levels of MPO, but not corticosterone, were found in middle-aged males and females perinatally exposed to eels. However, decreases in ERK1/2 and p65 activation, and acetylcholine levels were only detected in female hippocampus exposed to either intermediately or highly polluted eels. Sex selective effects were also detected with regard to memory, the only altered cognitive function. Thus, middle-aged females, but not males, perinatally exposed to either intermediately or highly polluted eels take longer to locate the escape platform, spend considerably less time in the platform and perform less visit to the platform in the retention test. Our results suggest perinatal programming of hippocampal-dependent memory deficit by inflammation in middle-aged offspring, in sex and dose dependent manner.
Collapse
Affiliation(s)
- Nidhal Soualeh
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Rachid Soulimani
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France
| | - Jaouad Bouayed
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Rue du Général Delestraint, Campus Bridoux, 57070 Metz, France.
| |
Collapse
|
8
|
Soualeh N, Dridi I, Eppe G, Némos C, Soulimani R, Bouayed J. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects. Brain Behav Immun 2017; 63:137-147. [PMID: 27702682 DOI: 10.1016/j.bbi.2016.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023] Open
Abstract
Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a gender-specific HPA axis enhanced activation.
Collapse
Affiliation(s)
- Nidhal Soualeh
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, BP 4102, 57040 Metz, France
| | - Imen Dridi
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, BP 4102, 57040 Metz, France
| | - Gauthier Eppe
- Université de Liège, Inorganic Analytical Chemistry, CART (Center for Analytical and Research Technology), B-4000 Sart-Tilman, Belgium
| | - Christophe Némos
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, BP 4102, 57040 Metz, France
| | - Rachid Soulimani
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, BP 4102, 57040 Metz, France
| | - Jaouad Bouayed
- Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, BP 4102, 57040 Metz, France.
| |
Collapse
|
9
|
Postconditioning with sevoflurane ameliorates spatial learning and memory deficit after hemorrhage shock and resuscitation in rats. J Surg Res 2016; 206:307-315. [DOI: 10.1016/j.jss.2016.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
|