1
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Zhang Y, Li L, Sun S, Cheng L, Gu Z, Hong Y. Structural characteristics, digestion properties, fermentation properties, and biological activities of butyrylated starch: A review. Carbohydr Polym 2024; 330:121825. [PMID: 38368086 DOI: 10.1016/j.carbpol.2024.121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
Butyrylated starch is produced by the esterification of hydroxyl groups in starch with butyryl groups, which improves the structural diversity of starch and expands its function and biological activity. The paper summarizes the structural properties and digestive properties, fermentation properties, and biological activities of butyrylated starch and describes the conformational relationships generated by the butyryl groups to reveal the underlying mechanisms. The butyryl groups replace the hydroxyl groups in starch and break the hydrogen bonds, which consequently changes the molecular, crystal, and granular structures of starch, while the starch structure also affects the distribution of the butyryl groups. Binding to the butyryl groups gives starch efficacy in resisting digestion, lowering the glycaemic index, releasing butyric acid in the colon, and regulating intestinal flora and metabolites. Relationships between starch structural parameters and butyric acid production and intestinal flora were also concluded to provide guidance for the rational design of butyrylated starch to improve efficacy. Moreover, based on its digestive and fermentation properties, butyrylated starch has exhibited good therapeutic efficacy for intestinal diseases, diabetes, polycystic ovary syndrome, and chronic restraint stress-induced abnormalities. This review provides a valuable reference for butyrylated starch advancement and utilization.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Lingjin Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Shenglin Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Cheng J, Zhou J. Unraveling the gut health puzzle: exploring the mechanisms of butyrate and the potential of High-Amylose Maize Starch Butyrate (HAMSB) in alleviating colorectal disturbances. Front Nutr 2024; 11:1285169. [PMID: 38304546 PMCID: PMC10830644 DOI: 10.3389/fnut.2024.1285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal disturbances encompass a variety of disorders that impact the colon and rectum, such as colitis and colon cancer. Butyrate, a short-chain fatty acid, plays a pivotal role in supporting gut health by nourishing colonocytes, promoting barrier function, modulating inflammation, and fostering a balanced microbiome. Increasing colorectal butyrate concentration may serve as a critical strategy to improve colon function and reduce the risk of colorectal disturbances. Butyrylated high-amylose maize starch (HAMSB) is an edible ingredient that efficiently delivers butyrate to the colon. HAMSB is developed by esterifying a high-amylose starch backbone with butyric anhydride. With a degree of substitution of 0.25, each hydroxy group of HAMSB is substituted by a butyryl group in every four D-glucopyranosyl units. In humans, the digestibility of HAMSB is 68% (w/w), and 60% butyrate molecules attached to the starch backbone is absorbed by the colon. One clinical trial yielded two publications, which showed that HAMSB significantly reduced rectal O6-methyl-guanine adducts and epithelial proliferation induced by the high protein diet. Fecal microbial profiles were assessed in three clinical trials, showing that HAMSB supplementation was consistently linked to increased abundance of Parabacteroides distasonis. In animal studies, HAMSB was effective in reducing the risk of diet- or AOM-induced colon cancer by reducing genetic damage, but the mechanisms differed. HAMSB functioned through affecting cecal ammonia levels by modulating colon pH in diet-induced cancer, while it ameliorated chemical-induced colon cancer through downregulating miR19b and miR92a expressions and subsequently activating the caspase-dependent apoptosis. Furthermore, animal studies showed that HAMSB improved colitis via regulating the gut immune modulation by inhibiting histone deacetylase and activating G protein-coupled receptors, but its role in bacteria-induced colon colitis requires further investigation. In conclusion, HAMSB is a food ingredient that may deliver butyrate to the colon to support colon health. Further clinical trials are warranted to validate earlier findings and determine the minimum effective dose of HAMSB.
Collapse
Affiliation(s)
- Junrui Cheng
- Global Scientific and Regulatory Department, Ingredion Incorporated, Bridgewater, NJ, United States
| | - Jing Zhou
- Global Scientific and Regulatory Department, Ingredion Incorporated, Bridgewater, NJ, United States
| |
Collapse
|
4
|
Thøgersen R, Bertram HC. Reformulation of processed meat to attenuate potential harmful effects in the gastrointestinal tract – A review of current knowledge and evidence of health prospects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
High-Amylose Maize, Potato, and Butyrylated Starch Modulate Large Intestinal Fermentation, Microbial Composition, and Oncogenic miRNA Expression in Rats Fed A High-Protein Meat Diet. Int J Mol Sci 2019; 20:ijms20092137. [PMID: 31052187 PMCID: PMC6540251 DOI: 10.3390/ijms20092137] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
High red meat intake is associated with the risk of colorectal cancer (CRC), whereas dietary fibers, such as resistant starch (RS) seemed to protect against CRC. The aim of this study was to determine whether high-amylose potato starch (HAPS), high-amylose maize starch (HAMS), and butyrylated high-amylose maize starch (HAMSB)—produced by an organocatalytic route—could oppose the negative effects of a high-protein meat diet (HPM), in terms of fermentation pattern, cecal microbial composition, and colonic biomarkers of CRC. Rats were fed a HPM diet or an HPM diet where 10% of the maize starch was substituted with either HAPS, HAMS, or HAMSB, for 4 weeks. Feces, cecum digesta, and colonic tissue were obtained for biochemical, microbial, gene expression (oncogenic microRNA), and immuno-histochemical (O6-methyl-2-deoxyguanosine (O6MeG) adduct) analysis. The HAMS and HAMSB diets shifted the fecal fermentation pattern from protein towards carbohydrate metabolism. The HAMSB diet also substantially increased fecal butyrate concentration and the pool, compared with the other diets. All three RS treatments altered the cecal microbial composition in a diet specific manner. HAPS and HAMSB showed CRC preventive effects, based on the reduced colonic oncogenic miR17-92 cluster miRNA expression, but there was no significant diet-induced differences in the colonic O6MeG adduct levels. Overall, HAMSB consumption showed the most potential for limiting the negative effects of a high-meat diet.
Collapse
|
6
|
Wang H, Wang Y, Zhao J, Jiang J, Zhou Y, Shi P, Liu Q, Sun Y. Dietary Nondigestible Polysaccharides Ameliorate Colitis by Improving Gut Microbiota and CD4 + Differentiation, as Well as Facilitating M2 Macrophage Polarization. JPEN J Parenter Enteral Nutr 2018; 43:401-411. [PMID: 30277587 DOI: 10.1002/jpen.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic mechanism of a specific multifiber mix diet (MF) designed to match the fiber content of a healthy diet in interleukin-10 knockout (IL-10-/- ) mice with spontaneous chronic colitis displaying similar characteristics to those of human Crohn's disease (CD). METHODS Sixteen-week-old IL-10-/- mice were used for the experiments with MF diet for 4 weeks. Severity of colitis, the composition of the fecal microbiota, expression of Th1/Th17 cells, myeloperoxidase (MPO) concentrations, and inflammatory cytokines and chemokines (tumor necrosis factor-α [TNF-α], IL-6, macrophage inflammatory protein [MIP]-2, monocyte chemoattractant protein-1 [MCP-1], and MIP-1α), as well as arginase 1 (Arg1) and signal transducers and activators of transcription 6 (STAT6) proteins, were measured at the end of the experiment. In addition, the corresponding metabolites (short-chain fatty acids) of MF on CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) were also detected in vivo and in vitro. RESULTS MF treatment significantly ameliorated colitis associated with decreased lamina propria frequency of Th1/Th17 cells, MPO concentrations, and inflammatory cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1, and MIP-1α). An increase in gut microbial diversity was observed after MF treatment compared with IL-10-/- mice, including a significant increase in bacteria belonging to the Firmicutes phylum and a significant decrease in bacteria belonging to the Proteobacteria phylum. Moreover, MF treatment increased the differentiation of CD4+ CD25+ Foxp3+ Tregs mainly by microbial metabolites butyrate. In addition, Arg1 and STAT6 proteins were also significantly increased after MF treatment. CONCLUSIONS These results shed light on the contribution of MF treatment to the CD mouse model and suggest that MF has potential as a therapeutic strategy for enhancing efficacy in inducing remission in patients with active CD.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yong Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jianguo Jiang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yaxing Zhou
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing University, Nanjing, 210089, Jiangsu Province, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
7
|
Head RJ, Fay MF, Cosgrove L, Y. C. Fung K, Rundle-Thiele D, Martin JH. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma. Cancer Biol Ther 2017; 18:917-926. [PMID: 29020502 PMCID: PMC5718815 DOI: 10.1080/15384047.2017.1385680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/01/2017] [Accepted: 09/24/2017] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O6-methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.
Collapse
Affiliation(s)
- R. J. Head
- University of South Australia, Adelaide, SA, Australia
| | - M. F. Fay
- University of Newcastle, Newcastle, NSW, Australia
- Genesis Cancer Care, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - L. Cosgrove
- CSIRO Health & Biosecurity, Adelaide, SA, Australia
| | | | - D. Rundle-Thiele
- School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - J. H. Martin
- University of Newcastle, Newcastle, NSW, Australia
- University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Effects of monobutyrin and tributyrin on liver lipid profile, caecal microbiota composition and SCFA in high-fat diet-fed rats. J Nutr Sci 2017; 6:e51. [PMID: 29152255 PMCID: PMC5672331 DOI: 10.1017/jns.2017.54] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
Butyric acid has been shown to have suppressive effects on inflammation and diseases related to the intestinal tract. The aim of the present study was to investigate whether supplementation of two glycerol esters, monobutyrin (MB) and tributyrin (TB), would reach the hindgut of rats, thus having an effect on the caecal profile of SCFA, microbiota composition and some risk markers associated with chronic inflammation. For this purpose, rats were fed high-fat diets after adding MB (1 and 5 g/kg) and TB (5 g/kg) to a diet without any supplementation (high-fat control; HFC). A low-fat (LF) diet was also included. In the liver, total cholesterol concentrations, LDL-cholesterol concentrations, LDL:HDL ratio, and succinic acid concentrations were reduced in rats given the MB and TB (5 g/kg) diets, compared with the group fed the HFC diet. These effects were more pronounced in MB than TB groups as also expressed by down-regulation of the gene Cyp8b1. The composition of the caecal microbiota in rats fed MB and TB was separated from the group fed the HFC diet, and also the LF diet, as evidenced by the absence of the phylum TM7 and reduced abundance of the genera Dorea (similar to LF-fed rats) and rc4-4. Notably, the caecal abundance of Mucispirillum was markedly increased in the MB group compared with the HFC group. The results suggest that dietary supplementation of MB and TB can be used to counteract disturbances associated with a HFC diet, by altering the gut microbiota, and decreasing liver lipids and succinic acid concentrations.
Collapse
|
9
|
Bishop KS, Xu H, Marlow G. Epigenetic Regulation of Gene Expression Induced by Butyrate in Colorectal Cancer: Involvement of MicroRNA. GENETICS & EPIGENETICS 2017; 9:1179237X17729900. [PMID: 28979170 PMCID: PMC5617089 DOI: 10.1177/1179237x17729900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer mortality globally. Development of CRC is closely associated with lifestyle, and diet may modulate risk. A Western-style diet is characterised by a high intake of red meat but low consumption of fruit, vegetables, and whole cereals. Such a diet is associated with CRC risks. It has been demonstrated that butyrate, produced by the fermentation of dietary plant fibre, can alter both genetic and epigenetic expressions. MicroRNAs (miRNAs) are small non-coding RNAs that are commonly present in both normal and tumour cells. Aberrant miRNA expression is associated with CRC initiation, progression, and metastasis. In addition, butyrate can modulate cell proliferation, differentiation, apoptosis, and miRNA expression in CRC. In this review, the effects of butyrate on modulating miRNA expression in CRC will be discussed. Furthermore, evidence on the effect of butyrate on CRC risk through reducing oncogenic miRNA expression will be presented.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Huawen Xu
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gareth Marlow
- Experimental Cancer Medicine Centre, Cardiff University, Cardiff, UK
| |
Collapse
|