1
|
Duarte GBS, Pascoal GDFL, Rogero MM. Polymorphisms Involved in Insulin Resistance and Metabolic Inflammation: Influence of Nutrients and Dietary Interventions. Metabolites 2025; 15:245. [PMID: 40278374 PMCID: PMC12029114 DOI: 10.3390/metabo15040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Insulin resistance (IR) is a metabolic disorder characterized by an impaired response to insulin. This condition is associated with excess adiposity and metabolic inflammation, contributing to an increased risk for related chronic diseases. Single-nucleotide polymorphisms (SNPs) can affect genes related to metabolic pathways which are related to IR and the individual response to nutrients and dietary patterns, affecting metabolic inflammation and insulin sensitivity. This narrative review explores the current evidence on interactions between genetic variants and dietary factors, specifically their effects in modulating IR and metabolic inflammation. A comprehensive search of the literature was conducted in PubMed, Google Scholar, and Web of Science, and a total of 95 articles were reviewed. The key findings reveal that SNPs in the TCF7L2, ADIPOQ, and TNF genes significantly influence metabolic responses and modulate the effects of the Mediterranean diet on biomarkers of inflammation and IR. Genotype-dependent variations in IR and inflammation biomarkers were observed in the response to different diets for SNPs in the TCF7L2, ADIPOQ, and TNF genes. Additionally, polygenic risk scores (PRSs) can also predict the response to the intake of nutrients and specific diets, and offer a promising tool for assessing genetic predisposition to IR. This review underscores the pivotal role of an individual's genetic background in the effects of their nutrient intake and in the responses to dietetic interventions, thereby laying the foundation for personalized and effective nutritional strategies tailored to each individual's necessity in mitigating IR and its associated risk factors for chronic diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (G.B.S.D.); (G.d.F.L.P.)
| |
Collapse
|
2
|
Rahimi MR, Symonds ME. Effect of FTO genotype on exercise training and diet-indued weight loss in overweight and obese adults: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39054902 DOI: 10.1080/10408398.2024.2382346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Our meta-analysis, encompassing 30 studies with 46,976 subjects, aimed to explore the impact of fat mass and obesity-associated protein (FTO) genotypes on weight response to exercise and dietary interventions in overweight and obese adults. Electronic databases including PubMed and Google Scholar were searched from 2020 to September 2023 to identify relevant studies. Results revealed a significant reduction in body weight among individuals with the FTO risk allele following exercise and diet interventions (standardized mean difference [SMD] = - 0.619, 95% CI: - 1.137, - 0.100; p = .01). When examining FTO variants, both AA (SMD = - 0.148, 95% CI: - 0.282, - 0.014, p = .03, I2 = 24.96) and TA genotypes (SMD = - 0.674, 95% CI: - 1.162, - 0.186, p = .007, I2 = 91.12) showed significant weight reduction compared to the TT genotype. Moreover, individuals with the high-risk genotype AA + TT achieved greater weight loss compared to those with the normal-risk genotype TT (SMD = - 0.419, 95% CI: - 0.655, -0.183, p = .0001, I2 = 92.08) in the dominant genetic model. Subgroup analysis indicated that FTO risk allele carriers (AA + AT) with exercise interventions lasting six months and a body mass index of 25 - 29 experienced greater weight loss compared to TT carriers. These findings emphasize the importance of genetic considerations in weight management interventions and suggest personalized approaches for combating obesity. Further clinical trials are warranted to validate our study's findings.
Collapse
Affiliation(s)
| | - Michael E Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Bojarczuk A, Egorova ES, Dzitkowska-Zabielska M, Ahmetov II. Genetics of Exercise and Diet-Induced Fat Loss Efficiency: A Systematic Review. J Sports Sci Med 2024; 23:236-257. [PMID: 38455434 PMCID: PMC10915602 DOI: 10.52082/jssm.2024.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Physical exercise and dieting are well-known and effective methods for fat loss and improving cardiovascular health. However, different individuals often react differently to the same exercise regimen or dietary plan. While specific individuals may undergo substantial fat loss, others may observe only limited effects. A wide range of inter-individual variability in weight gain and changes in body composition induced by physical exercises and diets led to an investigation into the genetic factors that may contribute to the individual variations in such responses. This systematic review aimed at identifying the genetic markers associated with fat loss resulting from diet or exercise. A search of the current literature was performed using the PubMed database. Forty-seven articles met the inclusion criteria when assessing genetic markers associated with weight loss efficiency in response to different types of exercises and diets. Overall, we identified 30 genetic markers of fat-loss efficiency in response to different kinds of diets and 24 in response to exercise. Most studies (n = 46) used the candidate gene approach. We should aspire to the customized selection of exercise and dietary plans for each individual to prevent and treat obesity.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Emiliya S Egorova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia
| | | | - Ildus I Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia
- Center for Phygital Education and Innovative Sports Technologies, Plekhanov Russian University of Economics, Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
4
|
Hoefer CC, Hollon LK, Campbell JA. The Role of the Human Gutome on Chronic Disease: A Review of the Microbiome and Nutrigenomics. Clin Lab Med 2022; 42:627-643. [PMID: 36368787 DOI: 10.1016/j.cll.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carrie C Hoefer
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, MSB 3005, Cincinnati, OH 45267, USA.
| | - Leah K Hollon
- Richmond Natural Medicine, National University of Natural Medicine Residency, 9211 Forest Hill Avenue, Richmond, VA 23235, USA
| | - Jennifer A Campbell
- Manchester University, College of Pharmacy, Natural, and Health Sciences, 10627 Diebold Road, Fort Wayne, IN 46845, USA
| |
Collapse
|
5
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
6
|
Trevisano RG, Gregnani MF, de Azevedo BC, de Almeida SS. The Association of Fat Mass and Obesity-Associated Gene Polymorphism (rs9939609) on the Body Composition of Older People: Systematic Review. Curr Aging Sci 2022; 15:229-241. [PMID: 35362391 DOI: 10.2174/1874609815666220331090135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Population aging is growing faster than any other age group. Associated with aging, the prevalence of overweight and obesity is a potential risk factor for the development and aggravation of numerous pathologies. A genetic factor often associated with obesity is the Fat mass and obesity associated (FTO) (rs9939609) gene polymorphism, which has been extensively investigated in children, young, and adults. However, few studies have been carried out with the older population. This review aimed to verify the influence of the FTO (rs9939609) gene polymorphism on the body composition of the older population. METHODS We conducted a systematic review and Meta-analysis of PubMed, Scielo, and LILACS databases. Statistical analysis for meta-analysis was performed using mean values of Body Mass Index (BMI) and standard deviations. RESULTS The results did not show significant differences between FTO genotypes and BMI values (-0.32, 95%CI -0.45 to -0.19, I2 = 0%, p = 0.52). However, 59% of the studies identified some influence on body composition, obesity, or comorbidities. CONCLUSION Few publications verify FTO polymorphism effects on specific groups of the older, suggesting a reduction in the influence of this gene in the BMI with advancing age. However, we believe that more controlled studies in older populations should be performed.
Collapse
Affiliation(s)
| | | | | | - Sandro Soares de Almeida
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.,Albert Einstein Israeli Hospital, São Paulo, Brazil.,Ibirapuera University, São Paulo, Brazil
| |
Collapse
|
7
|
Li S, He C, Nie H, Pang Q, Wang R, Zeng Z, Song Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:919087. [PMID: 35846293 PMCID: PMC9276935 DOI: 10.3389/fendo.2022.919087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The relationships between the rs1801282 and rs3856806 polymorphisms in nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) gene and obesity indexes as well as serum lipid levels have been extensively investigated in various studies, but the results were inconsistent and even contradictory. METHODS PubMed, Google Scholar, Embase, Cochrane Library, Web of Science, Wanfang, CNKI and VIP databases were searched for eligible studies. The random-effTPDEects model was used, and standardized mean difference (SMD) with 95% confidence interval (CI) was calculated to estimate the differences in obesity indexes and serum lipid levels between the subjects with different genotypes in a dominant model. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. RESULTS One hundred and twenty studies (70,317 subjects) and 33 studies (18,353 subjects) were identified in the analyses for the rs1801282 and rs3856806 polymorphisms, respectively. The G allele carriers of the rs1801282 polymorphism had higher levels of body mass index (SMD = 0.08 kg/m2, 95% CI = 0.04 to 0.12 kg/m2, p < 0.001), waist circumference (SMD = 0.12 cm, 95% CI = 0.06 to 0.18 cm, p < 0.001) and total cholesterol (SMD = 0.07 mmol/L, 95% CI = 0.02 to 0.11 mmol/L, p < 0.01) than the CC homozygotes. The T allele carriers of the rs3856806 polymorphism had lower levels of low-density lipoprotein cholesterol (SMD = -0.09 mmol/L, 95% CI = -0.15 to -0.03 mmol/L, p < 0.01) and higher levels of high-density lipoprotein cholesterol (SMD = 0.06 mmol/L, 95% CI = 0.02 to 0.10 mmol/L, p < 0.01) than the CC homozygotes. CONCLUSIONS The meta-analysis suggests that the G allele of the rs1801282 polymorphism confers an increased risk of obesity and hypercholesterolemia, while the T allele of the rs3856806 polymorphism displays a protective role against dyslipidemia, which can partly explain the associations between these polymorphisms and cardiovascular disease. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier [CRD42022319347].
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Haiyan Nie
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Qianyin Pang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixia Wang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhifu Zeng
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Yongyan Song,
| |
Collapse
|
8
|
A Comparison of Gene Expression Changes in the Blood of Individuals Consuming Diets Supplemented with Olives, Nuts or Long-Chain Omega-3 Fatty Acids. Nutrients 2020; 12:nu12123765. [PMID: 33302351 PMCID: PMC7762614 DOI: 10.3390/nu12123765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The Mediterranean diet, which is rich in olive oil, nuts, and fish, is considered healthy and may reduce the risk of chronic diseases. Methods: Here, we compared the transcriptome from the blood of subjects with diets supplemented with olives, nuts, or long-chain omega-3 fatty acids and identified the genes differentially expressed. The dietary genes obtained were subjected to network analysis to determine the main pathways, as well as the transcription factors and microRNA interaction networks to elucidate their regulation. Finally, a gene-associated disease interaction network was performed. Results: We identified several genes whose expression is altered after the intake of components of the Mediterranean diets compared to controls. These genes were associated with infection and inflammation. Transcription factors and miRNAs were identified as potential regulators of the dietary genes. Interestingly, caspase 1 and sialophorin are differentially expressed in the opposite direction after the intake of supplements compared to Alzheimer’s disease patients. In addition, ten transcription factors were identified that regulated gene expression in supplemented diets, mild cognitive impairment, and Alzheimer’s disease. Conclusions: We identified genes whose expression is altered after the intake of the supplements as well as the transcription factors and miRNAs involved in their regulation. These genes are associated with schizophrenia, neoplasms, and rheumatic arthritis, suggesting that the Mediterranean diet may be beneficial in reducing these diseases. In addition, the results suggest that the Mediterranean diet may also be beneficial in reducing the risk of dementia.
Collapse
|