1
|
Pan L, Wang M, Yang Y, Chen C, Dai H, Zhang Z, Hua B, Miao M. Whole-genome resequencing identified QTLs, candidate genes and Kompetitive Allele-Specific PCR markers associated with the large fruit of Atlantic Giant ( Cucurbita maxima). FRONTIERS IN PLANT SCIENCE 2022; 13:942004. [PMID: 35937359 PMCID: PMC9354748 DOI: 10.3389/fpls.2022.942004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Atlantic Giant (AG) pumpkin (Cucurbita maxima) produces the world's largest fruit. Elucidating the molecular mechanism of AG fruit formation is of scientific and practical importance. In this research, genome-wide resequencing of an F2 population produced by a cross between AG and its small-fruit ancestor Hubbard was used to identify quantitative trait loci (QTLs) and candidate genes. Transgressive segregation of fruit size-related traits was observed in the F2 population, suggesting that fruit size was a quantitative trait controlled by multiple genes. A genetic map with an average physical distance of 154 kb per marker was constructed, and 13 QTLs related to fruit size were identified using bin-map construction. RNA sequencing analysis revealed that pathways associated with assimilate accumulation into the fruit, including carbohydrate metabolism, were significantly enriched in differentially expressed genes. According to the predicted impact of mutation on the biological function of certain proteins, 13 genes were selected as candidate genes associated with fruit size, among which two phytohormone-related genes, CmaCh17G011340 (a flavin-containing monooxygenase) and CmaCh04G029660 (a leucine-rich repeat protein kinase) were chosen for further investigation. Finally, one insertion-deletion (inDel) and three single nucleotide polymorphisms (SNPs) were successfully transformed to Kompetitive Allele-Specific PCR (KASP) markers. The novel QTLs and candidate genes identified provide insights into the genetic mechanism of large fruit formation of AG, and the genetic map and tightly linked KASP markers developed in this study can be employed for marker-assisted breeding to alter fruit size of C. maxima.
Collapse
Affiliation(s)
- Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yating Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Haibo Dai
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Minmin Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Vasta R, Chia R, Traynor BJ, Chiò A. Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine 2022; 75:103795. [PMID: 34974309 PMCID: PMC8728044 DOI: 10.1016/j.ebiom.2021.103795] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Various genetic and environmental risk factors have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, the cause of most ALS cases remains obscure. In this review, we describe the current evidence implicating genetic and environmental factors in motor neuron degeneration. While the risk exerted by many environmental factors may appear small, their effect could be magnified by the presence of a genetic predisposition. We postulate that gene-environment interactions account for at least a portion of the unknown etiology in ALS. Climate underlies multiple environmental factors, some of which have been implied in ALS etiology, and the impact of global temperature increase on the gene-environment interactions should be carefully monitored. We describe the main concepts underlying such interactions. Although a lack of large cohorts with detailed genetic and environmental information hampers the search for gene-environment interactions, newer algorithms and machine learning approaches offer an opportunity to break this stalemate. Understanding how genetic and environmental factors interact to cause ALS may ultimately pave the way towards precision medicine becoming an integral part of ALS care.
Collapse
Affiliation(s)
- Rosario Vasta
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, Turin 1026, Italy; Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging (NIH), Bethesda, MD 20892, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; ASO Rapid Development Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Adriano Chiò
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, Turin 1026, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome 00185, Italy; Neurology 1, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
3
|
Zhang L, Li Z, Xing C, Gao N, Xu R. Folate Reverses NF-κB p65/Rela/IL-6 Level Induced by Hyperhomocysteinemia in Spontaneously Hypertensive Rats. Front Pharmacol 2021; 12:651582. [PMID: 34603014 PMCID: PMC8481771 DOI: 10.3389/fphar.2021.651582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is derived from the abnormal metabolism of homocysteine (Hcy) and is related to metabolic-related diseases. In addition, HHcy combined with hypertension increases the risk of cardiovascular diseases (CVD). However, the mechanism of HHcy aggravating hypertensive arterial damage and the efficacy of folate (FA) as a beneficial supplement have not been fully elucidated. In this study, we established a rat HHcy model and a hypertension combined with HHcy model. Rat tail artery blood pressure (BP), plasma Hcy, serum superoxide dismutase (SOD), and malondialdehyde (MDA) were measured. Rat thoracic aorta was for pathological analysis after 12 weeks of the experiment. The relative expression levels of oxidative stress and immune/inflammation in rat arterial tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The results demonstrated that the relative expression levels of oxidative stress and immune/inflammation were the highest in the hypertension combined with HHcy group, followed by the hypertension group. Compared with the hypertension group, the hypertension combined with HHcy group up-regulated the expression levels of interleukin-6 (IL-6) and nuclear factor-κ-gene binding (NF-κB) p65/Rela, but not NADPH oxidase (Nox). Furthermore, folate inhibited the expression of IL-6 and NF-κB p65/Rela, reduced the levels of MDA and HHcy, but significantly increased the SOD level. In conclusion, HHcy synergistically aggravated the arterial damage factor of hypertension through immune/inflammatory response. However, folate demonstrated anti-inflammatory properties and reversed the NF-κB p65/Rela/IL-6 level induced by HHcy in hypertensive rats.
Collapse
Affiliation(s)
- Lihua Zhang
- Cheeloo College of Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongliang Li
- Department of Women Healthcare, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Changcheng Xing
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ning Gao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Rui Xu
- Cheeloo College of Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|