1
|
Pi X, Zhu L, Xiang M, Zhao S, Li B, Qiao D, Zhang B. Incorporating maltitol regulates the gel properties and structural features of κ-carrageenan-corn starch-soy protein isolate based quaternary system and its application of low glycemic index gummies. Food Chem 2025; 481:143903. [PMID: 40179499 DOI: 10.1016/j.foodchem.2025.143903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
This study investigated the structure and gel features of maltitol-κ-carrageenan-corn starch-soy protein isolate quaternary system under the different maltitol addition (5 %-25 %), and evaluated the glycemic index (GI), digestibility, sensory and texture properties of gummies prepared based on this system. As maltitol incorporation increased, gelatinization temperature raised from 69.87 °C to 97.77 °C but the enthalpy value decreased from 8.40 J/g to 2.39 J/g. The quaternary complexes also showed structural changes, and there was the highest uniform of the dense gel network structure, the highest content of the short-range ordering structure, and the lowest crystallinity degree after the 20 % incorporation of maltitol. However, the textural properties (e.g., hardness, chewiness, gumminess and cohesiveness) and gel strength of the quaternary gels decreased, resulting from the formation of the weaker gel. Additionally, gummies at 20 % maltitol incorporation exhibited a low GI (33.38) value, digestibility and the desired sensory and texture characteristics.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Mengqian Xiang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bowen Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dongling Qiao
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China.
| |
Collapse
|
2
|
Patra R, Halder S, Saha R, Jana K, Sarkar K. Highly Efficient Photoswitchable Smart Polymeric Nanovehicle for Gene and Anticancer Drug Delivery in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:2299-2323. [PMID: 38551335 DOI: 10.1021/acsbiomaterials.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Over the past few decades, there has been significant interest in smart drug delivery systems capable of carrying multiple drugs efficiently, particularly for treating genetic diseases such as cancer. Despite the development of various drug delivery systems, a safe and effective method for delivering both anticancer drugs and therapeutic genes for cancer therapy remains elusive. In this study, we describe the synthesis of a photoswitchable smart polymeric vehicle comprising a photoswitchable spiropyran moiety and an amino-acid-based cationic monomer-based block copolymer using reversible addition-fragmentation chain transfer (RAFT) polymerization. This system aims at diagnosing triple-negative breast cancer and subsequently delivering genes and anticancer agents. Triple-negative breast cancer patients have elevated concentrations of Cu2+ ions, making them excellent targets for diagnosis. The polymer can detect Cu2+ ions with a low limit of detection value of 9.06 nM. In vitro studies on doxorubicin drug release demonstrated sustained delivery at acidic pH level similar to the tumor environment. Furthermore, the polymer exhibited excellent blood compatibility even at the concentration as high as 500 μg/mL. Additionally, it displayed a high transfection efficiency of approximately 82 ± 5% in MDA-MB-231 triple-negative breast cancer cells at an N/P ratio of 50:1. It is observed that mitochondrial membrane depolarization and intracellular reactive oxygen species generation are responsible for apoptosis and the higher number of apoptotic cells, which occurred through the arrest of the G2/M phase of the cell cycle were observed. Therefore, the synthesized light-responsive cationic polymer may be an effective system for diagnosis, with an efficient anticancer drug and gene carrier for the treatment of triple-negative breast cancer in the future.
Collapse
Affiliation(s)
- Rishik Patra
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Satyajit Halder
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
3
|
Ngo TV, Kunyanee K, Luangsakul N. Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. Foods 2023; 12:3659. [PMID: 37835312 PMCID: PMC10572933 DOI: 10.3390/foods12193659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Rice is a staple food and energy source for half the world's population. Due to its quick digestion and absorption in the gastrointestinal tract, rice is typically regarded as having a high or medium-high glycemic index (GI); however, this can vary depending on the variety, nutrient compositions, processing, and accompanying factors. This report included a table of the glycemic index for rice and rice products in different countries, which could give an overview and fundamental information on the recent GI of different rice varieties. In addition, latest updates about the mechanism effects of rice nutritional profiles and processing techniques on GI were also provided and discussed. The influence of state-of-the-art GI regulation methods was also evaluated. Furthermore, the effectiveness and efficiency of applied technologies were also given. Furthermore, this review offered some aspects about the potential nutraceutical application of rice that food scientists, producers, or consumers might consider. Diverse types of rice are grown under various conditions that could affect the GI of the product. The instinct nutrients in rice could show different effects on the digestion rate of its product. It also revealed that the rice product's digestibility is process-dependent. The postprandial glucose response of the rice products could be changed by modifying processing techniques, which might produce the new less-digestive compound or the inhibition factor in the starch hydrolysis process. Because of the significant importance of rice, this paper also concluded the challenges, as well as some important aspects for future research.
Collapse
Affiliation(s)
| | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.V.N.)
| |
Collapse
|
4
|
Peppa M, Manta A, Mavroeidi I, Nastos C, Pikoulis E, Syrigos K, Bamias A. Dietary Approach of Patients with Hormone-Related Cancer Based on the Glycemic Index and Glycemic Load Estimates. Nutrients 2023; 15:3810. [PMID: 37686842 PMCID: PMC10490329 DOI: 10.3390/nu15173810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hormone-related cancers, namely breast, endometrial, cervical, prostate, testicular, and thyroid, constitute a specific group of cancers dependent on hormone levels that play an essential role in cancer growth. In addition to the traditional risk factors, diet seems to be an important environmental factor that partially explains the steadily increased prevalence of this group of cancer. The composition of food, the dietary patterns, the endocrine-disrupting chemicals, and the way of food processing and preparation related to dietary advanced glycation end-product formation are all related to cancer. However, it remains unclear which specific dietary components mediate this relationship. Carbohydrates seem to be a risk factor for cancer in general and hormone-related cancers, in particular, with a difference between simple and complex carbohydrates. Glycemic index and glycemic load estimates reflect the effect of dietary carbohydrates on postprandial glucose concentrations. Several studies have investigated the relationship between the dietary glycemic index and glycemic load estimates with the natural course of cancer and, more specifically, hormone-related cancers. High glycemic index and glycemic load diets are associated with cancer development and worse prognosis, partially explained by the adverse effects on insulin metabolism, causing hyperinsulinemia and insulin resistance, and also by inflammation and oxidative stress induction. Herein, we review the existing data on the effect of diets focusing on the glycemic index and glycemic load estimates on hormone-related cancers.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Aspasia Manta
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Constantinos Nastos
- 3rd Department of Surgery, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Emmanouil Pikoulis
- 3rd Department of Surgery, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Konstantinos Syrigos
- 3rd Department of Internal Medicine, Sotiria Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece;
| |
Collapse
|
5
|
Understanding the Link between Sugar and Cancer: An Examination of the Preclinical and Clinical Evidence. Cancers (Basel) 2022; 14:cancers14246042. [PMID: 36551528 PMCID: PMC9775518 DOI: 10.3390/cancers14246042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Per capita sugar consumption has increased in the United States to over 45 kg per year. The average person in the US currently consumes significantly more added sugar in their diet than the World Health Organization's, the American Cancer Society's, and the American Heart Association's recommendations for daily sugar consumption. Evidence from epidemiologic and preclinical studies demonstrates that excess sugar consumption can lead to development of cancer and progression of disease for those with cancer independent of the association between sugar and obesity. Human epidemiologic studies and mechanistic preclinical studies in multiple cancers support a causal link between excess sugar and cancer. Preclinical studies show that high-sucrose or high-fructose diets activate several mechanistic pathways, including inflammation, glucose, and lipid metabolic pathways. Although human studies are limited, compelling human and primate studies have explored the link between added sugar and metabolic syndrome (MetS), a risk factor for cancer. Substantial evidence suggests a causal link between MetS and added sugar, indicating important implications in the association between excess sugar consumption and cancer. Human clinical trials are needed to determine whether sugar increases cancer development and progression independently of its established role in causing obesity as well as for further exploration of the mechanisms involved.
Collapse
|
6
|
Di Cairano M, Tchuenbou-Magaia FL, Condelli N, Cela N, Ojo CC, Radecka I, Dunmore S, Galgano F. Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study. Foods 2022; 11:3253. [PMID: 37431001 PMCID: PMC9601495 DOI: 10.3390/foods11203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
The glycaemic index (GI) is used to demonstrate the tendency of foods to increase blood glucose and is thus an important characteristic of newly formulated foods to tackle the rising prevalence of diabetics and associated diseases. The GI of gluten-free biscuits formulated with alternate flours, resistant starch and sucrose replacers was determined using in vivo methods with human subjects. The relationship between in vivo GI values and the predicted glycaemic index (pGI) from the in vitro digestibility-based protocols, generally used by researchers, was established. The in vivo data showed a gradual reduction in GI with increased levels of sucrose substitution by maltitol and inulin with biscuits where sucrose was fully replaced, showing the lowest GI of 33. The correlation between the GI and pGI was food formulation-dependent, even though GI values were lower than the reported pGI. Applying a correction factor to pGI tend to close the gap between the GI and pGI for some formulations but also causes an underestimation of GI for other samples. The results thus suggest that it may not be appropriate to use pGI data to classify food products according to their GI.
Collapse
Affiliation(s)
- Maria Di Cairano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fideline Laure Tchuenbou-Magaia
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Nicola Condelli
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Nazarena Cela
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Constance Chizoma Ojo
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Simon Dunmore
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Fernanda Galgano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale Dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|