1
|
Chiu HH, Tsao LI, Liu CY, Lu YY, Shih WM, Wang PH. Using a short questionnaire of the perimenopausal fatigue scale to evaluate perimenopausal women prone to fatigue syndrome. Taiwan J Obstet Gynecol 2021; 60:734-738. [PMID: 34247816 DOI: 10.1016/j.tjog.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Fatigue, a painful and unpleasant subjective experience, is common in perimenopausal women. Therefore, an effective tool to evaluate the fatigue-precipitating factor is important for perimenopausal women prone to fatigue syndrome. MATERIALS AND METHODS This study was surveyed by short-term perimenopausal fatigue scale. The enrollment period was from November 2019 to January 2020. The subjects were perimenopausal women prone to perimenopausal fatigue. The differences between the fatigue-precipitating factors and the degrees of fatigue and disturbance were determined by one-way ANOVA and t test. RESULTS A total of 220 perimenopausal women with mean age of 51.3 years were included. Among these, 64.1% did not have a habit of regular exercise and 55.5% had chronic diseases. Fatigue syndrome was found in 64.1% of subjects, who were mainly presented by shoulder and neck pain and sleep problems. There were significant differences between "perimenopausal fatigue" and "duration" (p < 0.001); "with and without regular exercise" (p = 0.05); and "with and without chronic diseases" (p = 0.03). CONCLUSIONS Our study showed the perimenopausal fatigue syndrome is more frequently found in perimenopausal women who have a co-morbidity (chronic illness) and do not have a habit of regular exercise. An early identification and prompt intervention may help perimenopausal women to deal with their fatigue syndrome. The short questionnaire perimenopausal fatigue scale seems to be useful for screening perimenopausal women prone to fatigue syndrome.
Collapse
Affiliation(s)
- Hsiao-Hui Chiu
- Department of Nursing, Taipei Veterans General Hospital, Taipei 112, Taiwan; Graduate Institute of Gerontology and Heath Care Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Lee-Ing Tsao
- Graduate Institute of Gerontology and Heath Care Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Chieh-Yu Liu
- Graduate Institute of Gerontology and Heath Care Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Yu-Ying Lu
- Graduate Institute of Gerontology and Heath Care Management, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Whei-Mei Shih
- Graduate Institute of Gerontology and Heath Care Management, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; Female Cancer Foundation, Taipei 112, Taiwan.
| |
Collapse
|
2
|
Lin YY, Hong Y, Yu SH, Wu XB, Shyu WC, Chen JS, Ting H, Yang AL, Lee SD. Antiapoptotic and mitochondrial biogenetic effects of exercise training on ovariectomized hypertensive rat hearts. J Appl Physiol (1985) 2019; 126:1661-1672. [PMID: 30998123 DOI: 10.1152/japplphysiol.00038.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study was to investigate the effects of exercise training on antiapoptotic pathways and mitochondrial biogenesis in ovariectomized hypertensive rats. Histopathological analysis, TUNEL assay, and Western blotting were performed on the excised hearts from female spontaneously hypertensive rats (SHR), which were divided into a sham-operated sedentary hypertensive (SHR-S), a sedentary hypertensive ovariectomized (SHR-O), and hypertensive ovariectomized rats that underwent treadmill exercise training (SHR-OT; 60 min/day, 5 days/wk) for 8 wk, along with normotensive Wistar Kyoto rats (WKY). When compared with the WKY group, the SHR-S group exhibited decreased protein levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial OPA-1 (mitochondrial biogenesis) and decreased further in the SHR-O group. The protein levels of p-PI3K, p-Akt, Bcl-2, Bcl-xL (prosurvival pathways), and the protein levels of PGC-1α and mitochondrial OPA1 (mitochondrial biogenesis) were increased in the SHR-OT group, but estrogen receptor (ER)α and ERβ were not changed when compared with the SHR-O group. The protein levels of t-Bid, Bad, Bax, cytosolic cytochrome c, activated caspase 9, and activated caspase 3 (mitochondria-dependent apoptotic pathways), as well as Fas ligand, TNF-α, Fas receptors, Fas-associated death domain, activated caspase 8 (Fas receptor-dependent apoptotic pathways) were decreased in the SHR-OT group, when compared with the SHR-O group. Exercise training protection on the coexistence of hypertension and ovariectomy-induced cardiac mitochondria-dependent and Fas receptor-dependent apoptotic pathways by enhancing the Bcl2-related and mitochondrial biogenetic prosurvival pathways might provide a new therapeutic effect on cardiac protection in oophorectomized early postmenopausal hypertensive women. NEW & NOTEWORTHY Widely dispersed cardiac apoptosis was found in the coexistence of hypertension and ovariectomy. Exercise training on a treadmill could prevent ovariectomized hypertension-induced widely dispersed cardiac apoptosis via mitochondria-dependent apoptotic pathway (t-Bid, Bad, Bax, cytosolic cytochrome c, activated caspase 9, and activated caspase 3) and Fas receptor-dependent apoptotic pathway (Fas ligand, tumor necrosis factor-α, Fas receptors, Fas-associated death domain, activated caspase 8, and activated caspase 3) through enhancing the Bcl2-related (p-PI3K, p-Akt, Bcl-2, Bcl-xL) and mitochondrial biogenetic (PGC-1α and mitochondrial optic atrophy 1) prosurvival pathways.
Collapse
Affiliation(s)
- Yi-Yuan Lin
- School of Rehabilitation Medicine, Weifang Medical University , Shandong , China.,Department of Physical Therapy, Asia University , Taichung , Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichun, Taiwan
| | - Yi Hong
- The First Rehabilitation Hospital of Shanghai , Shanghai , China
| | - Shao-Hong Yu
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine , Shandong , China
| | - Xu-Bo Wu
- Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung , Taiwan.,Translational Medicine Research Center, China Medical University Hospital , Taichung , Taiwan
| | - Jwo-Sheng Chen
- Department of Sports Medicine, China Medical University , Taichung , Taiwan
| | - Hua Ting
- Center of Sleep Medicine, Department of Physical Medicine and Rehabilitation, Chung-Shan Medical University Hospital, Chung-Shan Medical University , Taichung , Taiwan
| | - Ai-Lun Yang
- Department of Sports Sciences, University of Taipei , Taipei , Taiwan
| | - Shin-Da Lee
- School of Rehabilitation Medicine, Weifang Medical University , Shandong , China.,Department of Physical Therapy, Asia University , Taichung , Taiwan.,College of Rehabilitation, Shandong University of Traditional Chinese Medicine , Shandong , China.,Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University , Taichung , Taiwan
| |
Collapse
|
3
|
Tung YT, Hsu YJ, Chien YW, Huang CC, Huang WC, Chiu WC. Tea Seed Oil Prevents Obesity, Reduces Physical Fatigue, and Improves Exercise Performance in High-Fat-Diet-Induced Obese Ovariectomized Mice. Molecules 2019; 24:molecules24050980. [PMID: 30862039 PMCID: PMC6429230 DOI: 10.3390/molecules24050980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Menopause is associated with changes in body composition (a decline in lean body mass and an increase in total fat mass), leading to an increased risk of metabolic syndrome, nonalcoholic fatty liver disease, and heart disease. A healthy diet to control body weight is an effective strategy for preventing and treating menopause-related metabolic syndromes. In the present study, we investigated the effect of long-term feeding of edible oils (soybean oil (SO), tea seed oil (TO), and lard oil (LO)) on female ovariectomized (OVX) mice. SO, TO, and LO comprise mainly polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), and saturated fatty acids (SFA), respectively. However, there have been quite limited studies to investigate the effects of different fatty acids (PUFA, MUFA, and SFA) on physiological adaption and metabolic homeostasis in a menopausal population. In this study, 7-week-old female Institute of Cancer Research (ICR) mice underwent either bilateral laparotomy (sham group, n = 8) or bilateral oophorectomy (OVX groups, n = 24). The OVX mice given a high-fat diet (HFD) were randomly divided into three groups: OVX+SO, OVX+TO, and OVX+LO. An HFD rich in SO, TO, or LO was given to the OVX mice for 12 weeks. Our findings revealed that the body weight and relative tissues of UFP (uterus fatty peripheral) and total fat (TF) were significantly decreased in the OVX+TO group compared with those in the OVX+SO and OVX+LO groups. However, no significant difference in body weight or in the relative tissues of UFP and TF was noted among the OVX+SO and OVX+LO groups. Furthermore, mice given an HFD rich in TO exhibited significantly decreased accumulation of liver lipid droplets and adipocyte sizes of UFP and brown adipose tissue (BAT) compared with those given an HFD rich in SO or LO. Moreover, replacing SO or LO with TO significantly increased oral glucose tolerance. Additionally, TO improved endurance performance and exhibited antifatigue activity by lowering ammonia, blood urea nitrogen, and creatine kinase levels. Thus, tea seed oil (TO) rich in MUFA could prevent obesity, reduce physical fatigue, and improve exercise performance compared with either SO (PUFA)- or LO(SFA)-rich diets in this HFD-induced obese OVX mice model.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei City 11031, Taiwan.
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Yi-Wen Chien
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
4
|
de Almeida SA, Claudio ERG, Mengal V, Brasil GA, Merlo E, Podratz PL, Graceli JB, Gouvea SA, de Abreu GR. Estrogen Therapy Worsens Cardiac Function and Remodeling and Reverses the Effects of Exercise Training After Myocardial Infarction in Ovariectomized Female Rats. Front Physiol 2018; 9:1242. [PMID: 30233413 PMCID: PMC6134041 DOI: 10.3389/fphys.2018.01242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/16/2018] [Indexed: 01/24/2023] Open
Abstract
There is an increase in the incidence of cardiovascular events such as myocardial infarction (MI) after menopause. However, the use of estrogen therapy (E2) remains controversial. The aim of this study was to evaluate the effects of E2, alone and combined with exercise training (ET), on cardiac function and remodeling in ovariectomized (OVX) rats after MI. Wistar female rats underwent ovariectomy, followed by MI induction were separated into five groups: S; MI; MI+ET; MI+E2; and MI+ET+E2. Fifteen days after MI or sham surgery, treadmill ET and/or estrogen therapy [17-β estradiol-3-benzoate (E2), s.c. three times/week] were initiated and maintained for 8 weeks. After the treatment and/or training period, the animals underwent cardiac hemodynamic evaluation through catheterization of the left ventricle (LV); the LV systolic and diastolic pressures (LVSP and LVEDP, respectively), maximum LV contraction and relaxation derivatives (dP/dt+ and dP/dt−), and isovolumic relaxation time (Tau) were assessed. Moreover, histological analyses of the heart (collagen and hypertrophy), cardiac oxidative stress [advanced oxidation protein products (AOPPs)], pro- and antioxidant protein expression by Western blotting and antioxidant enzyme activity in the heart were evaluated. The MI reduced the LVSP, dP/dt+ and dP/dt− but increased the LVEDP and Tau. E2 did not prevent the MI-induced changes in cardiac function, even when combined with ET. An increase in the dP/dt+ was observed in the E2 group compared with the MI group. There were no changes in collagen deposition and myocyte hypertrophy caused by the treatments. The increases in AOPP, gp91-phox, and angiotensin II type 1 receptor expression induced by MI were not reduced by E2. There were no changes in the expression of catalase caused by MI or by the treatments, although, a reduction in superoxide dismutase (SOD) expression occurred in the groups subjected to E2 treatment. Whereas there were post-MI reductions in activities of SOD and catalase enzymes, only that of SOD was prevented by ET. Therefore, we conclude that E2 therapy does not prevent the MI-induced changes in cardiac function and worsens parameters related to cardiac remodeling. Moreover, E2 reverses the positive effects of ET when used in combination, in OVX infarcted female rats.
Collapse
Affiliation(s)
- Simone Alves de Almeida
- Laboratório de Regulação Neurohumoral da Circulação, Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Erick R G Claudio
- Laboratório de Regulação Neurohumoral da Circulação, Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Vinicius Mengal
- Laboratório de Regulação Neurohumoral da Circulação, Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Girlandia A Brasil
- Núcleo de Pesquisas em Ciências Farmacêuticas - Nupecfarma, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Vila Velha, Vila Velha, Brazil
| | - Eduardo Merlo
- Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Priscila L Podratz
- Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jones B Graceli
- Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Sonia A Gouvea
- Laboratório de Regulação Neurohumoral da Circulação, Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Gláucia Rodrigues de Abreu
- Laboratório de Regulação Neurohumoral da Circulação, Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|