1
|
Barrett P, Louie KW, Dupont JB, Mack DL, Maves L. Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. WIREs Mech Dis 2024; 16:e1653. [PMID: 39444092 PMCID: PMC11563919 DOI: 10.1002/wsbm.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe degenerative muscle disease caused by mutations in the DMD gene, which encodes dystrophin. Despite its initial description in the late 19th century by French neurologist Guillaume Duchenne de Boulogne, and identification of causal DMD genetic mutations in the 1980s, therapeutics remain challenging. The current standard of care is corticosteroid treatment, which delays the progression of muscle dysfunction but is associated with significant adverse effects. Emerging therapeutic approaches, including AAV-mediated gene transfer, CRISPR gene editing, and small molecule interventions, are under development but face considerable obstacles. Although DMD is viewed as a progressive muscle disease, muscle damage and abnormal molecular signatures are already evident during fetal myogenesis. This early onset of pathology suggests that the limited success of current therapies may partly be due to their administration after aberrant embryonic myogenesis has occurred in the absence of dystrophin. Consequently, identifying optimal therapeutic strategies and intervention windows for DMD may depend on a better understanding of the earliest DMD disease mechanisms. As newer techniques are applied, the field is gaining increasingly detailed insights into the early muscle developmental abnormalities in DMD. A comprehensive understanding of the initial events in DMD pathogenesis and progression will facilitate the generation and testing of effective therapeutic interventions.
Collapse
Affiliation(s)
- Philip Barrett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Ke'ale W Louie
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - David L Mack
- Departments of Rehabilitation Medicine, Bioengineering and Neurobiology & Biophysics, Institute for Stem Cell and Regenerative Medicine, University of Washington Medicine, Seattle, Washington, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Barthélémy I, Calmels N, Weiss RB, Tiret L, Vulin A, Wein N, Peccate C, Drougard C, Beroud C, Deburgrave N, Thibaud JL, Escriou C, Punzón I, Garcia L, Kaplan JC, Flanigan KM, Leturcq F, Blot S. X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skelet Muscle 2020; 10:23. [PMID: 32767978 PMCID: PMC7412789 DOI: 10.1186/s13395-020-00239-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Canine models of Duchenne muscular dystrophy (DMD) are a valuable tool to evaluate potential therapies because they faithfully reproduce the human disease. Several cases of dystrophinopathies have been described in canines, but the Golden Retriever muscular dystrophy (GRMD) model remains the most used in preclinical studies. Here, we report a new spontaneous dystrophinopathy in a Labrador Retriever strain, named Labrador Retriever muscular dystrophy (LRMD). Methods A colony of LRMD dogs was established from spontaneous cases. Fourteen LRMD dogs were followed-up and compared to the GRMD standard using several functional tests. The disease causing mutation was studied by several molecular techniques and identified using RNA-sequencing. Results The main clinical features of the GRMD disease were found in LRMD dogs; the functional tests provided data roughly overlapping with those measured in GRMD dogs, with similar inter-individual heterogeneity. The LRMD causal mutation was shown to be a 2.2-Mb inversion disrupting the DMD gene within intron 20 and involving the TMEM47 gene. In skeletal muscle, the Dp71 isoform was ectopically expressed, probably as a consequence of the mutation. We found no evidence of polymorphism in either of the two described modifier genes LTBP4 and Jagged1. No differences were found in Pitpna mRNA expression levels that would explain the inter-individual variability. Conclusions This study provides a full comparative description of a new spontaneous canine model of dystrophinopathy, found to be phenotypically equivalent to the GRMD model. We report a novel large DNA mutation within the DMD gene and provide evidence that LRMD is a relevant model to pinpoint additional DMD modifier genes.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Nadège Calmels
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Laboratoire de Diagnostic Génétique-Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, 1 Place de L'Hôpital, 67091, Strasbourg, France
| | - Robert B Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adeline Vulin
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Nicolas Wein
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Cécile Peccate
- SQY Therapeutics, Université de Versailles Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Carole Drougard
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France.,APHM, Hôpital Timone Enfants, Laboratoire de Génétique Moléculaire, Marseille, France
| | - Nathalie Deburgrave
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Jean-Laurent Thibaud
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Catherine Escriou
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Isabel Punzón
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Luis Garcia
- Université de Versailles Saint-Quentin-en-Yvelines, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Jean-Claude Kaplan
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Kevin M Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - France Leturcq
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, Centre de Recherche en Myologie, Institut de Myologie, G.H. Pitié Salpêtrière, Paris, France
| | - Stéphane Blot
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
3
|
Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med 2019; 25:1505-1511. [PMID: 31591596 DOI: 10.1038/s41591-019-0594-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
The essential product of the Duchenne muscular dystrophy (DMD) gene is dystrophin1, a rod-like protein2 that protects striated myocytes from contraction-induced injury3,4. Dystrophin-related protein (or utrophin) retains most of the structural and protein binding elements of dystrophin5. Importantly, normal thymic expression in DMD patients6 should protect utrophin by central immunologic tolerance. We designed a codon-optimized, synthetic transgene encoding a miniaturized utrophin (µUtro), deliverable by adeno-associated virus (AAV) vectors. Here, we show that µUtro is a highly functional, non-immunogenic substitute for dystrophin, preventing the most deleterious histological and physiological aspects of muscular dystrophy in small and large animal models. Following systemic administration of an AAV-µUtro to neonatal dystrophin-deficient mdx mice, histological and biochemical markers of myonecrosis and regeneration are completely suppressed throughout growth to adult weight. In the dystrophin-deficient golden retriever model, µUtro non-toxically prevented myonecrosis, even in the most powerful muscles. In a stringent test of immunogenicity, focal expression of µUtro in the deletional-null German shorthaired pointer model produced no evidence of cell-mediated immunity, in contrast to the robust T cell response against similarly constructed µDystrophin (µDystro). These findings support a model in which utrophin-derived therapies might be used to treat clinical dystrophin deficiency, with a favorable immunologic profile and preserved function in the face of extreme miniaturization.
Collapse
|
4
|
Kim S, Mun S, Kim T, Lee KH, Kang K, Cho JY, Han K. Transposable element-mediated structural variation analysis in dog breeds using whole-genome sequencing. Mamm Genome 2019; 30:289-300. [PMID: 31414176 DOI: 10.1007/s00335-019-09812-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Naturally occurring diseases in dogs provide an important animal model for studying human disease including cancer, heart disease, and autoimmune disorders. Transposable elements (TEs) make up ~ 31% of the dog (Canis lupus familiaris) genome and are one of main drivers to cause genomic variations and alter gene expression patterns of the host genes, which could result in genetic diseases. To detect structural variations (SVs), we conducted whole-genome sequencing of three different breeds, including Maltese, Poodle, and Yorkshire Terrier. Genomic SVs were detected and visualized using BreakDancer program. We identified a total of 2328 deletion SV events in the three breeds compared with the dog reference genome of Boxer. The majority of the genetic variants were found to be TE insertion polymorphism (1229) and the others were TE-mediated deletion (489), non-TE-mediated deletion (542), simple repeat-mediated deletion (32), and other indel (36). Among the TE insertion polymorphism, 286 elements were full-length LINE-1s (L1s). In addition, the 49 SV candidates located in the genic regions were experimentally verified and their polymorphic rates within each breed were examined using PCR assay. Polymorphism analysis of the genomic variants revealed that some of the variants exist polymorphic in the three dog breeds, suggesting that their SV events recently occurred in the dog genome. The findings suggest that TEs have contributed to the genomic variations among the three dog breeds of Maltese, Poodle, and Yorkshire Terrier. In addition, the polymorphic events between the dog breeds indicate that TEs were recently retrotransposed in the dog genome.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
5
|
Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs. PLoS One 2018; 13:e0193372. [PMID: 29474464 PMCID: PMC5825102 DOI: 10.1371/journal.pone.0193372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog.
Collapse
|
6
|
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the DMD gene and loss of the protein dystrophin. The absence of dystrophin leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Despite extensive attempts to develop definitive therapies for DMD, the standard of care remains prednisone, which has only palliative benefits. Animal models, mainly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, have played a key role in studies of DMD pathogenesis and treatment development. Because the GRMD clinical syndrome is more severe than in mice, better aligning with the progressive course of DMD, canine studies may translate better to humans. The original founder dog for all GRMD colonies worldwide was identified in the early 1980s before the discovery of the DMD gene and dystrophin. Accordingly, analogies to DMD were initially drawn based on similar clinical features, ranging from the X-linked pattern of inheritance to overlapping histopathologic lesions. Confirmation of genetic homology between DMD and GRMD came with identification of the underlying GRMD mutation, a single nucleotide change that leads to exon skipping and an out-of-frame DMD transcript. GRMD colonies have subsequently been established to conduct pathogenetic and preclinical treatment studies. Simultaneous with the onset of GRMD treatment trials, phenotypic biomarkers were developed, allowing definitive characterization of treatment effect. Importantly, GRMD studies have not always substantiated findings from mdx mice and have sometimes identified serious treatment side effects. While the GRMD model may be more clinically relevant than the mdx mouse, usage has been limited by practical considerations related to expense and the number of dogs available. This further complicates ongoing broader concerns about the poor rate of translation of animal model preclinical studies to humans with analogous diseases. Accordingly, in performing GRMD trials, special attention must be paid to experimental design to align with the approach used in DMD clinical trials. This review provides context for the GRMD model, beginning with its original description and extending to its use in preclinical trials.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Mail Stop 4458, College Station, TX, 77843-4458, USA.
| |
Collapse
|