1
|
Lewis CJ, Chipman SI, D'Souza P, Johnston JM, Yousef MH, Gahl WA, Tifft CJ, Acosta MT. Brain Age Prediction in Type II GM1 Gangliosidosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.23.25326206. [PMID: 40313303 PMCID: PMC12045421 DOI: 10.1101/2025.04.23.25326206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
GM1 gangliosidosis is an inherited, progressive, and fatal neurodegenerative lysosomal storage disorder with no approved treatment. We calculated a predicted brain ages and Brain Structures Age Gap Estimation (BSAGE) for 81 MRI scans from 41 Type II GM1 gangliosidosis patients and 897 MRI scans from 556 neurotypical controls (NC) utilizing BrainStructuresAges , a machine learning MRI analysis pipeline. NC showed whole brain aging at a rate of 0.83 per chronological year compared with 1.57 in juvenile GM1 patients and 12.25 in late-infantile GM1 patients, accurately reflecting the clinical trajectories of the two disease subtypes. Accelerated and distinct brain aging was also observed throughout midbrain structures including the thalamus and caudate nucleus, hindbrain structures including the cerebellum and brainstem, and the ventricles in juvenile and late-infantile GM1 patients compared to NC. Predicted brain age and BSAGE both correlated with cross-sectional and longitudinal clinical assessments, indicating their importance as a surrogate neuroimaging outcome measures for clinical trials in GM1 gangliosidosis.
Collapse
|
2
|
Murray SJ, Almuqbel MM, Felton SA, Palmer NJ, Deane AR, Myall DJ, Shoorangiz R, Ella A, Keller M, Palmer DN, Melzer TR, Mitchell NL. Magnetic Resonance Imaging as a Readout of CLN5 Gene Therapy Efficacy in Sheep. Brain Behav 2025; 15:e70431. [PMID: 40181626 PMCID: PMC11968780 DOI: 10.1002/brb3.70431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 03/01/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of rare inherited neurodegenerative disorders caused by mutations in one of 13 ceroid lipofuscinosis neuronal (CLN) genes. The diseases share a common set of symptoms, including motor and cognitive dysfunction, progressive loss of vision, and seizure activity. A naturally occurring model of CLN5 NCL exists in New Zealand Borderdale sheep, which exhibit similar clinical disease and post-mortem pathology to the human disease. Recent trials of concurrent intracerebroventricular and intravitreal gene therapy in sheep with CLN5 disease confirmed the therapeutic efficacy of this approach. Given the documented natural history of brain volume changes, detected by MRI, in sheep with CLN5 disease, the current study sought to utilize MRI as both a longitudinal readout and cross-sectional measure of therapeutic efficacy in treated sheep. METHOD Sheep treated at a pre-symptomatic timepoint underwent five T1-weighted structural MRI scans between 5 and 18 months of age. Sheep treated at early and advanced symptomatic disease stages underwent a single MRI at 18 months of age. All scans from treated sheep were compared to historical healthy control and affected untreated sheep at each age. FINDING Pre-symptomatic treated sheep showed growth in intracranial volume at a comparable rate to healthy control sheep over the course of the study. Whilst grey matter volume decreased and cerebrospinal fluid volume increased in treated sheep, this was to a much smaller degree than in untreated affected sheep. The majority of the cortical regions assessed showed stable volumes over the course of the study, with the notable exception of the cerebellum. Both early and advanced symptomatic treated sheep showed intracranial volumes comparable to untreated affected sheep at 18 months of age. However, when individual tissue types were assessed, grey and white matter were significantly larger, and cerebrospinal fluid was significantly smaller in early symptomatic sheep compared to untreated affected sheep, while the same volumes in advanced symptomatic treated sheep were comparable to untreated affected sheep. Cortical regions assessed showed an age-at-treatment and dose effect. CONCLUSION This study has demonstrated that MRI, a clinically relevant outcome measure, can be successfully utilized to assess therapeutic efficacy in a large animal model of CLN5 NCL, both in a longitudinal study and a cross-sectional study when robust natural history data is available for comparison.
Collapse
Affiliation(s)
- Samantha J. Murray
- Faculty of Agriculture and Life SciencesLincoln UniversityCanterburyNew Zealand
| | - Mustafa M. Almuqbel
- Pacific Radiology GroupChristchurchNew Zealand
- New Zealand Brain Research InstituteChristchurchNew Zealand
| | | | | | - Ashley R. Deane
- Faculty of Agriculture and Life SciencesLincoln UniversityCanterburyNew Zealand
| | | | | | - Arsène Ella
- UMR Physiologie de la Reproduction & des ComportementsINRAE/CNRS/University of ToursNouzillyFrance
| | - Matthieu Keller
- UMR Physiologie de la Reproduction & des ComportementsINRAE/CNRS/University of ToursNouzillyFrance
| | - David N. Palmer
- Faculty of Agriculture and Life SciencesLincoln UniversityCanterburyNew Zealand
- Department of RadiologyUniversity of OtagoChristchurchNew Zealand
| | - Tracy R. Melzer
- Pacific Radiology GroupChristchurchNew Zealand
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life SciencesLincoln UniversityCanterburyNew Zealand
- Department of RadiologyUniversity of OtagoChristchurchNew Zealand
| |
Collapse
|
3
|
Lewis CJ, Johnston JM, D'Souza P, Kolstad J, Zoppo C, Vardar Z, Kühn AL, Peker A, Rentiya ZS, Gahl WA, Shazeeb MS, Tifft CJ, Acosta MT. A Case for Automated Segmentation of MRI Data in Milder Neurodegenerative Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.18.25322304. [PMID: 40034761 PMCID: PMC11875249 DOI: 10.1101/2025.02.18.25322304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Volumetric analysis and segmentation of magnetic resonance imaging (MRI) data is an important tool for evaluating neurological disease progression and neurodevelopment. Fully automated segmentation pipelines offer faster and more reproducible results. However, since these analysis pipelines were trained on or run based on atlases consisting of neurotypical controls, it is important to evaluate how accurate these methods are for neurodegenerative diseases. In this study, we compared 5 fully automated segmentation pipelines including FSL, Freesurfer, volBrain, SPM12, and SimNIBS with a manual segmentation process in GM1 gangliosidosis patients and neurotypical controls. Methods We analyzed 45 MRI scans from 16 juvenile GM1 gangliosidosis patients, 11 MRI scans from 8 late-infantile GM1 gangliosidosis patients, and 19 MRI scans from 11 neurotypical controls. We compared results for 7 brain structures including volumes of the total brain, bilateral thalamus, ventricles, bilateral caudate nucleus, bilateral lentiform nucleus, corpus callosum, and cerebellum. Results We found volBrain's vol2Brain pipeline to have the strongest correlations with the manual segmentation process for the whole brain, ventricles, and thalamus. We also found Freesurfer's recon-all pipeline to have the strongest correlations with the manual segmentation process for the caudate nucleus. For the cerebellum, we found a combination of volBrain's vol2Brain and SimNIBS' headreco to have the strongest correlations depending on the cohort. For the lentiform nucleus, we found a combination of recon-all and FSL's FIRST to give the strongest correlations depending on the cohort. Lastly, we found segmentation of the corpus callosum to be highly variable. Conclusion Previous studies have considered automated segmentation techniques to be unreliable, particularly in neurodegenerative diseases. However, in our study we produced results comparable to those obtained with a manual segmentation process. While manual segmentation processes conducted by neuroradiologists remain the gold standard, we present evidence to the capabilities and advantages of using an automated process including the ability to segment white matter throughout the brain or analyze large datasets, which pose feasibility issues to fully manual processes. Future investigations should consider the use of artificial intelligence-based segmentation pipelines to determine their accuracy in GM1 gangliosidosis, lysosomal storage disorders, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Precilla D'Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | | | - Christopher Zoppo
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester MA USA
| | - Zeynep Vardar
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester MA USA
| | - Anna Luisa Kühn
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester MA USA
| | | | - Zubir S Rentiya
- Department of Radiation Oncology & Radiology, University of Virginia, Charlottesville, VA, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | | | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
4
|
Maguire AS, Ta L, Gross AL, Osterhoudt DE, Cannon JS, Hall PI, Sandey M, Seyfried TN, Gray-Edwards HL, Sena-Esteves M, Martin DR. Intravenous gene therapy improves lifespan and clinical outcomes in feline Sandhoff Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623838. [PMID: 39605340 PMCID: PMC11601349 DOI: 10.1101/2024.11.15.623838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sandhoff Disease (SD), a fatal neurodegenerative disorder, is caused by the absence of ß-hexosaminidase (Hex) and subsequent accumulation of GM2 ganglioside in lysosomes. Previous studies have led to adeno-associated virus (AAV) gene therapy for children with GM2 gangliosidosis in both expanded access and Phase I/II clinical trials via intracranial and/or cerebrospinal fluid-based delivery. The current study investigated intravenous (IV) gene therapy of SD cats, treated at one month of age with a bicistronic AAV vector. While untreated SD cats lived to 4.3±0.2 months, cats treated with low and high doses lived to 8.3±1.2 and 12.4±2.7 months, respectively. In-life assessments revealed clear clinical benefit of AAV treatment, with the most dramatic improvement seen in the reduction of overt full-body tremors. Cerebrospinal fluid levels of aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were decreased, indicating a reduction of cell damage within the central nervous system. Magnetic resonance imaging (MRI) and spectroscopy (MRS) acquired on a 7 Tesla scanner indicated that structural pathology and metabolite abnormalities are partially normalized by AAV treatment. Dose-dependent reduction of GM2 ganglioside storage and increases in Hex activity were most substantial in the caudal regions of the brain and in the spinal cord. Immunohistochemistry revealed reduction in neuroinflammatory cell populations and partial correction of myelin deficits. These results support the dose-dependent efficacy of AAV delivered IV for significant restoration of clinical metrics and Hex function in a feline model of SD.
Collapse
Affiliation(s)
- Anne S. Maguire
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine; Auburn, AL, USA
- Department of Anatomy, Physiology, & Pharmacology, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Amanda L. Gross
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| | - Devin E. Osterhoudt
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| | - Jessica S. Cannon
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| | - Paige I. Hall
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| | - Maninder Sandey
- Department of Pathobiology, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| | | | - Heather L. Gray-Edwards
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R. Martin
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine; Auburn, AL, USA
- Department of Anatomy, Physiology, & Pharmacology, Auburn University College of Veterinary Medicine; Auburn, AL, USA
| |
Collapse
|
5
|
Lewis CJ, Vardar Z, Luisa Kühn A, Johnston JM, D'Souza P, Gahl WA, Salman Shazeeb M, Tifft CJ, Acosta MT. Differential Tractography: A Biomarker for Neuronal Function in Neurodegenerative Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.25.24312255. [PMID: 39371116 PMCID: PMC11451749 DOI: 10.1101/2024.08.25.24312255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
GM1 gangliosidosis is an ultra-rare inherited neurodegenerative lysosomal storage disorder caused by biallelic mutations in the GLB1 gene. GM1 is uniformly fatal and has no approved therapies, although clinical trials investigating gene therapy as a potential treatment for this condition are underway. Novel outcome measures or biomarkers demonstrating the longitudinal effects of GM1 and potential recovery due to therapeutic intervention are urgently needed to establish efficacy of potential therapeutics. One promising tool is differential tractography, a novel imaging modality utilizing serial diffusion weighted imaging (DWI) to quantify longitudinal changes in white matter microstructure. In this study, we present the novel use of differential tractography in quantifying the progression of GM1 alongside age-matched neurotypical controls. We analyzed 113 DWI scans from 16 GM1 patients and 32 age-matched neurotypical controls to investigate longitudinal changes in white matter pathology. GM1 patients showed white matter degradation evident by both the number and size of fiber tract loss. In contrast, neurotypical controls showed longitudinal white matter improvements as evident by both the number and size of fiber tract growth. We also corroborated these findings by documenting significant correlations between cognitive global impression (CGI) scores of clinical presentations and our differential tractography derived metrics in our GM1 cohort. Specifically, GM1 patients who lost more neuronal fiber tracts also had a worse clinical presentation. This result demonstrates the importance of differential tractography as an important biomarker for disease progression in GM1 patients with potential extension to other neurodegenerative diseases and therapeutic intervention.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Zeynep Vardar
- Department of Radiology, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester MA USA
| | - Anna Luisa Kühn
- Department of Radiology, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester MA USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Precilla D'Souza
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester MA USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
6
|
Hosseini K, Fallahi J, Aligholi H, Heidari Z, Nadimi E, Safari F, Sisakht M, Atapour A, Khajeh S, Tabei SMB, Razban V. Creation of an in vitro model of GM1 gangliosidosis by CRISPR/Cas9 knocking-out the GLB1 gene in SH-SY5Y human neuronal cell line. Cell Biochem Funct 2024; 42:e4102. [PMID: 39076066 DOI: 10.1002/cbf.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of β-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of β-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Foster D, Williams L, Arnold N, Larsen J. Therapeutic developments for neurodegenerative GM1 gangliosidosis. Front Neurosci 2024; 18:1392683. [PMID: 38737101 PMCID: PMC11082364 DOI: 10.3389/fnins.2024.1392683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, β-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.
Collapse
Affiliation(s)
- Dorian Foster
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Noah Arnold
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
8
|
Hu C, Feng Y, Huang G, Cui K, Fan M, Xiang W, Shi Y, Ye D, Ye H, Bai X, Xu F, Xu Y, Huang J. Melatonin prevents EAAC1 deletion-induced retinal ganglion cell degeneration by inhibiting apoptosis and senescence. J Pineal Res 2024; 76:e12916. [PMID: 37786968 DOI: 10.1111/jpi.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Normal tension glaucoma (NTG) is referred to as a progressive degenerative disorder of the retinal ganglion cells (RGCs), resulting in nonreversible visual defects, despite intraocular pressure levels within the statistically normal range. Current therapeutic strategies for NTG yield limited benefits. Excitatory amino acid carrier 1 (EAAC1) knockout (EAAC1-/- ) in mice has been shown to induce RGC degeneration without elevating intraocular pressure, mimicking pathological characteristics of NTG. In this study, we explored whether daily oral administration of melatonin could block RGCs loss and prevent retinal morphology and function defects associated with EAAC1 deletion. We also explored the molecular mechanisms underlying EAAC1 deletion-induced RGC degeneration and the neuroprotective effects of melatonin. Our RNA sequencing and in vivo data indicated EAAC1 deletion caused elevated oxidative stress, activation of apoptosis and cellular senescence pathways, and neuroinflammation in RGCs. However, melatonin administration efficiently prevented these detrimental effects. Furthermore, we investigated the potential role of apoptosis- and senescence-related redox-sensitive factors in EAAC1 deletion-induced RGCs degeneration and the neuroprotective effects of melatonin administration. We observed remarkable upregulation of p53, whereas NRF2 and Sirt1 expression were significantly decreased in EAAC1-/- mice, which were prevented by melatonin treatment, suggesting that melatonin exerted its neuroprotective effects possibly through modulating NRF2/p53/Sirt1 redox-sensitive signaling pathways. Overall, our study provided a solid foundation for the application of melatonin in the management of NTG.
Collapse
Affiliation(s)
- Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guangyi Huang
- Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Wu Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huiwen Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fan Xu
- Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
9
|
Hosseini K, Fallahi J, Tabei SMB, Razban V. Gene therapy approaches for GM1 gangliosidosis: Focus on animal and cellular studies. Cell Biochem Funct 2023; 41:1093-1105. [PMID: 38018878 DOI: 10.1002/cbf.3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme β-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed M B Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
11
|
de Sousa AA, Rigby Dames BA, Graff EC, Mohamedelhassan R, Vassilopoulos T, Charvet CJ. Going beyond established model systems of Alzheimer's disease: companion animals provide novel insights into the neurobiology of aging. Commun Biol 2023; 6:655. [PMID: 37344566 PMCID: PMC10284893 DOI: 10.1038/s42003-023-05034-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Brier A Rigby Dames
- Department of Psychology, University of Bath, Bath, UK
- Department of Computer Science, University of Bath, Bath, UK
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rania Mohamedelhassan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
12
|
Kell P, Sidhu R, Qian M, Mishra S, Nicoli ER, D'Souza P, Tifft CJ, Gross AL, Gray-Edwards HL, Martin DR, Sena-Esteves M, Dietzen DJ, Singh M, Luo J, Schaffer JE, Ory DS, Jiang X. A pentasaccharide for monitoring pharmacodynamic response to gene therapy in GM1 gangliosidosis. EBioMedicine 2023; 92:104627. [PMID: 37267847 PMCID: PMC10277919 DOI: 10.1016/j.ebiom.2023.104627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in β-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with β-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.
Collapse
Affiliation(s)
- Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sonali Mishra
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Elena-Raluca Nicoli
- Medical Genetics Branch and Office of the Clinical Director, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Precilla D'Souza
- Medical Genetics Branch and Office of the Clinical Director, NHGRI, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, 20892, USA
| | - Cynthia J Tifft
- Medical Genetics Branch and Office of the Clinical Director, NHGRI, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, NHGRI, NIH, Bethesda, MD, 20892, USA
| | - Amanda L Gross
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Manmilan Singh
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
14
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
15
|
Hocquemiller M, Giersch L, Mei X, Gross AL, Randle AN, Gray-Edwards HL, Hudson JA, Todeasa S, Stoica L, Martin DR, Sena-Esteves M, Aiach K, Laufer R. AAVrh10 vector corrects pathology in animal models of GM1 gangliosidosis and achieves widespread distribution in the CNS of nonhuman primates. Mol Ther Methods Clin Dev 2022; 27:281-292. [PMID: 36320411 PMCID: PMC9594110 DOI: 10.1016/j.omtm.2022.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
GM1 gangliosidosis is a rare, inherited neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes the lysosomal hydrolase acid β-galactosidase (β-gal). β-gal deficiency leads to toxic accumulation of GM1 ganglioside, predominantly in the central nervous system (CNS), resulting in progressive neurodegeneration. LYS-GM101 is an AAVrh.10-based gene therapy vector carrying the human GLB1 cDNA. The efficacy of intra-cerebrospinal fluid injection of LYS-GM101 analogs was demonstrated in GM1 mouse and cat models with widespread diffusion of β-gal and correction of GM1 ganglioside accumulation in the CNS without observable adverse effects. Clinical dose selection was performed, based on a good-laboratory-practice study, in nonhuman primates (NHPs) using the clinical LYS-GM101 vector. A broadly distributed increase of β-gal activity was observed in NHP brain 3 months after intra-cisterna magna injection of LYS-GM101 at 1.0 × 1012 vg/mL CSF and 4.0 × 1012 vg/mL CSF, with 20% and 60% increases compared with vehicle-treated animals, respectively. Histopathologic examination revealed asymptomatic adverse changes in the sensory pathways of the spinal cord and dorsal root ganglia in both sexes and at both doses. Taken as a whole, these pre-clinical data support the initiation of a clinical study with LYS-GM101 for the treatment of GM1 gangliosidosis.
Collapse
Affiliation(s)
- Michaël Hocquemiller
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France,Corresponding author Michaël Hocquemiller, Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France.
| | - Laura Giersch
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Xin Mei
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Amanda L. Gross
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Ashley N. Randle
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Heather L. Gray-Edwards
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Judith A. Hudson
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Sophia Todeasa
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lorelei Stoica
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Douglas R. Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA,Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Miguel Sena-Esteves
- Department of Neurology, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Aiach
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Ralph Laufer
- Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France,Corresponding author Ralph Laufer, Lysogene, 18–20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France.
| |
Collapse
|
16
|
Hematopoietic stem cell gene therapy ameliorates CNS involvement in murine model of GM1-gangliosidosis. Mol Ther Methods Clin Dev 2022; 25:448-460. [PMID: 35615711 PMCID: PMC9118356 DOI: 10.1016/j.omtm.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
GM1-gangliosidosis is a progressive neurodegenerative glycosphingolipidosis resulting from a GLB1 gene mutation causing a deficiency of the lysosomal enzyme β-galactosidase, which leads to the abnormal accumulation of GM1 ganglioside in the central nervous system. In the most severe early infantile phenotype, excessive ganglioside accumulation results in a rapid decline in neurological and psychomotor functions, and death occurs within 2 years of age. Currently, there is no effective therapy for GM1-gangliosidosis. In this study, we evaluated the therapeutic efficacy of ex vivo gene therapy targeting hematopoietic stem cells using a lentiviral vector to increase enzyme activity, reduce substrate accumulation, and improve astrocytosis and motor function. Transplanting GLB1-transduced hematopoietic stem cells in mice increased β-galactosidase enzyme activity in the central nervous system and visceral organs. Specifically, this gene therapy significantly decreased GM1 ganglioside levels in the brain, especially in the cerebrum. More important, this gene therapy rectified astrocytosis in the cerebrum and improved motor function deficits. Furthermore, the elevation of serum β-galactosidase activity in secondary-transplanted mice suggested the ability of transduced hematopoietic stem cells to repopulate long term. These data indicate that ex vivo gene therapy with lentiviral vectors is a promising approach for the treatment of brain deficits in GM1 gangliosidosis.
Collapse
|
17
|
Liu S, Ma W, Feng Y, Zhang Y, Jia X, Tang C, Tang F, Wu X, Huang Y. AAV9-coGLB1 Improves Lysosomal Storage and Rescues Central Nervous System Inflammation in a Mutant Mouse Model of GM1 Gangliosidosis. Curr Gene Ther 2022; 22:352-365. [PMID: 35249485 DOI: 10.2174/1566523222666220304092732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GM1 gangliosidosis (GM1) is an autosomal recessive disorder characterized by deficiency of beta-galactosidase (β-gal), a ubiquitous lysosomal enzyme that catalyzes the hydrolysis of GM1 ganglioside. OBJECTIVE To explore the application of the AAV9-coGLB1 for effective treatment in a GM1 gangliosidosis mutant mouse model. METHODS We designed a novel adeno-associated virus 9 (AAV9) vector expressing β-gal (AAV9-coGLB1) to treat GM1 gangliosidosis. The vector, injected via the caudal vein at 4 weeks of age, drove the widespread and sustained expression of β-gal for up to 32 weeks in the Glb1G455R/G455R mutant mice (GM1 mice). RESULTS The increased levels of β-gal reduced the pathological damage occurring in GM1 mice. Histological analyses showed that myelin deficits and neuron-specific pathology were reduced in cerebral cortex region of AAV9-coGLB1-treated mice. Immunohistochemical staining showed that the accumulation of GM1 ganglioside was also reduced after gene therapy. The reduction of the storage in these regions was accompanied by a decrease in activated microglia. In addition, AAV9 treatment reversed the blockade of autophagic flux in GM1 mice. CONCLUSION These results show that AAV9-coGLB1 reduces the pathological signs of GM1 gangliosidosis in a mouse model.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Wenhao Ma
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Yuyu Feng
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Yan Zhang
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Xuefang Jia
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Fang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Xiaobing Wu
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| |
Collapse
|
18
|
Nicoli ER, Annunziata I, d’Azzo A, Platt FM, Tifft CJ, Stepien KM. GM1 Gangliosidosis-A Mini-Review. Front Genet 2021; 12:734878. [PMID: 34539759 PMCID: PMC8446533 DOI: 10.3389/fgene.2021.734878] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
GM1 gangliosidosis is a progressive, neurosomatic, lysosomal storage disorder caused by mutations in the GLB1 gene encoding the enzyme β-galactosidase. Absent or reduced β-galactosidase activity leads to the accumulation of β-linked galactose-containing glycoconjugates including the glycosphingolipid (GSL) GM1-ganglioside in neuronal tissue. GM1-gangliosidosis is classified into three forms [Type I (infantile), Type II (late-infantile and juvenile), and Type III (adult)], based on the age of onset of clinical symptoms, although the disorder is really a continuum that correlates only partially with the levels of residual enzyme activity. Severe neurocognitive decline is a feature of Type I and II disease and is associated with premature mortality. Most of the disease-causing β-galactosidase mutations reported in the literature are clustered in exons 2, 6, 15, and 16 of the GLB1 gene. So far 261 pathogenic variants have been described, missense/nonsense mutations being the most prevalent. There are five mouse models of GM1-gangliosidosis reported in the literature generated using different targeting strategies of the Glb1 murine locus. Individual models differ in terms of age of onset of the clinical, biochemical, and pathological signs and symptoms, and overall lifespan. However, they do share the major abnormalities and neurological symptoms that are characteristic of the most severe forms of GM1-gangliosidosis. These mouse models have been used to study pathogenic mechanisms, to identify biomarkers, and to evaluate therapeutic strategies. Three GLB1 gene therapy trials are currently recruiting Type I and Type II patients (NCT04273269, NCT03952637, and NCT04713475) and Type II and Type III patients are being recruited for a trial utilizing the glucosylceramide synthase inhibitor, venglustat (NCT04221451).
Collapse
Affiliation(s)
- Elena-Raluca Nicoli
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Cynthia J. Tifft
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karolina M. Stepien
- Adult Inherited Metabolic Disorders, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Story B, Taghian T, Gallagher J, Koehler J, Taylor A, Randle A, Nielsen K, Gross A, Maguire A, Carl S, Johnson S, Fernau D, Diffie E, Cuddon P, Corado C, Chandra S, Sena-Esteves M, Kolodny E, Jiang X, Martin D, Gray-Edwards H. Natural history of Tay-Sachs disease in sheep. Mol Genet Metab 2021; 134:164-174. [PMID: 34456134 PMCID: PMC8811770 DOI: 10.1016/j.ymgme.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 01/17/2023]
Abstract
Tay-Sachs disease (TSD) is a fatal neurodegenerative disease caused by a deficiency of the enzyme β-N-acetylhexosaminidase A (HexA). TSD naturally occurs in Jacob sheep is the only experimental model of TSD. TSD in sheep recapitulates neurologic features similar to juvenile onset and late onset TSD patients. Due to the paucity of human literature on pathology of TSD, a better natural history in the sheep TSD brain, which is on the same order of magnitude as a child's, is necessary for evaluating therapy and characterizing the pathological events that occur. To provide clinicians and researchers with a clearer understanding of longitudinal pathology in patients, we compare spectrum of clinical signs and brain pathology in mildly symptomatic (3-months), moderately symptomatic (6-months), or severely affected TSD sheep (humane endpoint at ~9-months of age). Increased GM2 ganglioside in the CSF of TSD sheep and a TSD specific biomarker on MRS (taurine) correlate with disease severity. Microglial activation and reactive astrocytes were observed globally on histopathology in TSD sheep with a widespread reduction in oligodendrocyte density. Myelination is reduced primarily in the forebrain illustrated by loss of white matter on MRI. GM2 and GM3 ganglioside were increased and distributed differently in various tissues. The study of TSD in the sheep model provides a natural history to shed light on the pathophysiology of TSD, which is of utmost importance due to novel therapeutics being assessed in human patients.
Collapse
Affiliation(s)
- Brett Story
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Jey Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Amanda Taylor
- Auburn University, Department of Clinical Sciences Auburn University, Auburn, AL, United States of America
| | - Ashley Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Amanda Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Annie Maguire
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Sara Carl
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Siauna Johnson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Elise Diffie
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Paul Cuddon
- Neurology Locum, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL
| | - Carly Corado
- BioMarin Pharmaceutical Inc, Novato, CA, United States of America
| | - Sundeep Chandra
- BioMarin Pharmaceutical Inc, Novato, CA, United States of America
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Edwin Kolodny
- Bernard A. Marden Professor of Neurology and Chairman of the Department of Neurology, New York University, School of Medicine, NY, NY, United States of America; Head of the Division of Neurogenetics, New York University, School of Medicine, NY, NY, United States of America
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MI, United States of America
| | - Douglas Martin
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Neurology Locum, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL
| | - Heather Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States of America; Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America; Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States of America.
| |
Collapse
|
20
|
Maguire AS, Martin DR. White Matter Pathology as a Barrier to Gangliosidosis Gene Therapy. Front Cell Neurosci 2021; 15:682106. [PMID: 34456684 PMCID: PMC8397537 DOI: 10.3389/fncel.2021.682106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
The gangliosidoses are a family of neurodegenerative lysosomal storage diseases that have recently seen promising advances in gene therapy. White matter deficits are well established components of gangliosidosis pathology that are now receiving more attention because they are partially refractory to correction by gene therapy. After a brief synopsis of normal myelinogenesis, this review outlines current viewpoints on the origin of white matter deficits in the gangliosidoses and potential obstacles to treating them effectively by gene therapy. Dysmyelinogenesis (failure of myelin sheaths to form properly) is proposed as the predominant contributor to white matter pathology, but precise mechanistic details are not well understood. The involvement of neuronal storage deficits may extend beyond secondary demyelination (destruction of myelin due to axonal loss) and contribute to dysmyelinogenesis. Preclinical studies in animal models of the gangliosidoses have substantially improved lifespan and quality of life, leading to the initiation of several clinical trials. However, improvement of white matter pathology has lagged behind other metrics and few evidence-based explanations have been proposed to date. Research groups in the field are encouraged to include myelin-specific investigations in future gene therapy work to address this gap in knowledge.
Collapse
Affiliation(s)
- Anne S. Maguire
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Douglas R. Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
21
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
22
|
Rosenberg JB, Chen A, De BP, Dyke JP, Ballon DJ, Monette S, Ricart Arbona RJ, Kaminsky SM, Crystal RG, Sondhi D. Safety of Direct Intraparenchymal AAVrh.10-Mediated Central Nervous System Gene Therapy for Metachromatic Leukodystrophy. Hum Gene Ther 2021; 32:563-580. [PMID: 33380277 DOI: 10.1089/hum.2020.269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metachromatic leukodystrophy, a fatal pediatric neurodegenerative lysosomal storage disease caused by mutations in the arylsulfatase A (ARSA) gene, is characterized by intracellular accumulation of sulfatides in the lysosomes of cells of the central nervous system (CNS). In previous studies, we have demonstrated efficacy of AAVrh.10hARSA, an adeno-associated virus (AAV) serotype rh.10 vector coding for the human ARSA gene to the CNS of a mouse model of the disease, and that catheter-based intraparenchymal administration of AAVrh.10hARSA to the CNS of nonhuman primates (NHPs) white matter results in widespread expression of ARSA. As a formal dose-escalating safety/toxicology study, we assessed the safety of intraparenchymal delivery of AAVrh.10hARSA vector to 12 sites in the white matter of the CNS of NHPs at 2.85 × 1010 (total low dose, 2.4 × 109 genome copies [gc]/site) and 1.5 × 1012 (total high dose, 1.3 × 1011 gc/site) gc, compared to AAVrh.10Null (1.5 × 1012 gc total, 1.3 × 1011 gc/site) as a vector control, and phosphate buffered saline for a sham surgical control. No significant adverse effects were observed in animals treated with low dose AAVrh.10hARSA. However, animals treated with the high dose AAVrh.10ARSA and the high dose Null vector had highly localized CNS abnormalities on magnetic resonance imaging scans at the sites of catheter infusions, and histopathology demonstrated that these sites were associated with infiltrates of T cells, B cells, microglial cells, and/or macrophages. Although these findings had no clinical consequences, these safety data contribute to understanding the dose limits for CNS white matter direct intraparenchymal administration of AAVrh.10 vectors for treatment of CNS disorders.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jonathan P Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, New York, USA
| | - Douglas J Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, New York, USA
| | - Sebastien Monette
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|