1
|
Rodriguez M, Trevisan B, Ramamurthy RM, George SK, Diaz J, Alexander J, Meares D, Schwahn DJ, Quilici DR, Figueroa J, Gautreaux M, Farland A, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Transplanting FVIII/ET3-secreting cells in fetal sheep increases FVIII levels long-term without inducing immunity or toxicity. Nat Commun 2023; 14:4206. [PMID: 37452013 PMCID: PMC10349136 DOI: 10.1038/s41467-023-39986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Hemophilia A is the most common X-linked bleeding disorder affecting more than half-a-million individuals worldwide. Persons with severe hemophilia A have coagulation FVIII levels <1% and experience spontaneous debilitating and life-threatening bleeds. Advances in hemophilia A therapeutics have significantly improved health outcomes, but development of FVIII inhibitory antibodies and breakthrough bleeds during therapy significantly increase patient morbidity and mortality. Here we use sheep fetuses at the human equivalent of 16-18 gestational weeks, and we show that prenatal transplantation of human placental cells (107-108/kg) bioengineered to produce an optimized FVIII protein, results in considerable elevation in plasma FVIII levels that persists for >3 years post-treatment. Cells engraft in major organs, and none of the recipients mount immune responses to either the cells or the FVIII they produce. Thus, these studies attest to the feasibility, immunologic advantage, and safety of treating hemophilia A prior to birth.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Brady Trevisan
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Ritu M Ramamurthy
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Jonathan Diaz
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Jordan Alexander
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diane Meares
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - David R Quilici
- The Mick Hitchcock Ph.D. Nevada Proteomics Center, University of Nevada Reno, Reno, NV, USA
| | - Jorge Figueroa
- Center for Research in Obstetrics and Gynecology, WFSOM, Winston Salem, NC, USA
| | - Michael Gautreaux
- HLA/Immunogenetics and Immunodiagnostics Laboratories, Winston Salem, NC, USA
| | - Andrew Farland
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine (WFSOM), Winston Salem, NC, USA.
| |
Collapse
|
2
|
Ramamurthy RM, Rodriguez M, Ainsworth HC, Shields J, Meares D, Bishop C, Farland A, Langefeld CD, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII. Front Immunol 2022; 13:954984. [PMID: 36591257 PMCID: PMC9800010 DOI: 10.3389/fimmu.2022.954984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.
Collapse
Affiliation(s)
- Ritu M. Ramamurthy
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jordan Shields
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Colin Bishop
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Andrew Farland
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher D. Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
3
|
Trevisan B, Rodriguez M, Medder H, Lankford S, Combs R, Owen J, Atala A, Porada CD, Almeida-Porada G. Autologous bone marrow-derived MSCs engineered to express oFVIII-FLAG engraft in adult sheep and produce an effective increase in plasma FVIII levels. Front Immunol 2022; 13:1070476. [PMID: 36532079 PMCID: PMC9755880 DOI: 10.3389/fimmu.2022.1070476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Hemophilia A (HA) is the most common X-linked bleeding disorder, occurring in 1 in 5,000 live male births and affecting >1 million individuals worldwide. Although advances in protein-based HA therapeutics have improved health outcomes, current standard-of-care requires infusion 2-3 times per week for life, and 30% of patients develop inhibitors, significantly increasing morbidity and mortality. There are thus unmet medical needs requiring novel approaches to treat HA. Methods We tested, in a highly translational large animal (sheep) model, whether the unique immunological and biological properties of autologous bone marrow (BM)-derived mesenchymal stromal cells (MSCs) could enable them to serve as cellular delivery vehicles to provide long-term expression of FVIII, avoiding the need for frequent infusions. Results We show that autologous BM-MSCs can be isolated, transduced with a lentivector to produce high levels of ovine (o)FVIII, extensively expanded, and transplanted into adult animals safely. The transplanted cells engraft in multiple organs, and they stably produce and secrete sufficient quantities of FVIII to yield elevated plasma FVIII levels for at least 15 weeks. Discussion These studies thus highlight the promise of cellular-based gene delivery approaches for treating HA.
Collapse
Affiliation(s)
- Brady Trevisan
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hailey Medder
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Rebecca Combs
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John Owen
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States,*Correspondence: Graça Almeida-Porada,
| |
Collapse
|
4
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
5
|
Peddi NC, Marasandra Ramesh H, Gude SS, Gude SS, Vuppalapati S. Intrauterine Fetal Gene Therapy: Is That the Future and Is That Future Now? Cureus 2022; 14:e22521. [PMID: 35371822 PMCID: PMC8951626 DOI: 10.7759/cureus.22521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/05/2022] Open
Abstract
Researchers are looking into techniques to intervene sooner and earlier in the disease process thanks to advances in disease genetics, etiologies, and prenatal diagnosis. We conducted a literature search in PubMed-indexed journals to provide an overview of the evolution of gene therapy, rationale for prenatal gene therapy, uses and risks of gene therapy, and ethical issues following the usage of gene therapy. Recent animal research has revealed that transmitting genetic material to a growing fetus through viral and non-viral vectors is conceivable besides proving how gene-editing technology is achieved by various mechanisms that utilize zinc finger nucleases, TAL effector nucleases, and clustered short palindromic repeats-Cas9 complex. This review offers an overview of the current knowledge in the field of prenatal gene therapy, as well as potential future research avenues. In addition, it weighs the risks of prenatal gene therapy, such as oncogenesis, genetic mutation transfer from mother to child, and fetal disruption, against the expected benefits, such as preventing the development of severe early-onset illness symptoms, targeting previously inaccessible organs, and establishing tolerance to the therapeutic transgenic protein, all of which lead to permanent somatic gene correction. This review discusses the scientific, ethical, legal, and sociological implications of these groundbreaking genetic disease prevention techniques, as well as the parameters that must be satisfied for a future clinical application to be considered.
Collapse
|
6
|
Wang X, Ma C, Rodríguez Labrada R, Qin Z, Xu T, He Z, Wei Y. Recent advances in lentiviral vectors for gene therapy. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1842-1857. [PMID: 34708326 DOI: 10.1007/s11427-021-1952-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cuicui Ma
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Roberto Rodríguez Labrada
- Department Clinical Neurophysiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, 80100, Cuba
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuquan Wei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Kizilocak H, Young G. Emerging drugs for hemophilia A: insights into phase II and III clinical trials. Expert Opin Emerg Drugs 2021; 26:337-350. [PMID: 34601977 DOI: 10.1080/14728214.2021.1988073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Hemophilia is a lifelong, genetic-bleeding disorder, which inadequately treated results in permanent joint damage. It is characterized by spontaneous and trauma-related bleeding episodes. In the last 50 years, treatment has seen dramatic improvements which have improved the quality of life of persons with hemophilia. AREAS COVERED This review will provide a summary of current pharmacological approaches for hemophilia A as well as discuss novel agents which are either approved recently or in phase II-III clinical trials, plasma-derived and recombinant factor VIII (FVIII) products, extended half-life FVIII products, bypassing agents and non-replacement therapies. EXPERT OPINION Novel therapies are already changing the way that hemophilia A is managed, and as more new therapies get approved, there will be a revolution in the management of this serious condition. Clinicians will have both the opportunities as well as the challenges of incorporating such new technologies into clinical practice.
Collapse
Affiliation(s)
- Hande Kizilocak
- Children's Hospital Los Angeles, Hemostasis and Thrombosis Center, Cancer and Blood Disease Institute, Los Angeles, CA, USA
| | - Guy Young
- Children's Hospital Los Angeles, Hemostasis and Thrombosis Center, Cancer and Blood Disease Institute, Los Angeles, CA, USA.,Department of Hematology and Oncology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
8
|
Stem C, Rodman C, Ramamurthy RM, George S, Meares D, Farland A, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Investigating Optimal Autologous Cellular Platforms for Prenatal or Perinatal Factor VIII Delivery to Treat Hemophilia A. Front Cell Dev Biol 2021; 9:678117. [PMID: 34447745 PMCID: PMC8383113 DOI: 10.3389/fcell.2021.678117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with the severe form of hemophilia A (HA) present with a severe phenotype, and can suffer from life-threatening, spontaneous hemorrhaging. While prophylactic FVIII infusions have revolutionized the clinical management of HA, this treatment is short-lived, expensive, and it is not available to many A patients worldwide. In the present study, we evaluated a panel of readily available cell types for their suitability as cellular vehicles to deliver long-lasting FVIII replacement following transduction with a retroviral vector encoding a B domain-deleted human F8 transgene. Given the immune hurdles that currently plague factor replacement therapy, we focused our investigation on cell types that we deemed to be most relevant to either prenatal or very early postnatal treatment and that could, ideally, be autologously derived. Our findings identify several promising candidates for use as cell-based FVIII delivery vehicles and lay the groundwork for future mechanistic studies to delineate bottlenecks to efficient production and secretion of FVIII following genetic-modification.
Collapse
Affiliation(s)
- Christopher Stem
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ritu M. Ramamurthy
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sunil George
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Diane Meares
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew Farland
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Trevisan B, Morsi A, Aleman J, Rodriguez M, Shields J, Meares D, Farland AM, Doering CB, Spencer HT, Atala A, Skardal A, Porada CD, Almeida-Porada G. Effects of Shear Stress on Production of FVIII and vWF in a Cell-Based Therapeutic for Hemophilia A. Front Bioeng Biotechnol 2021; 9:639070. [PMID: 33732691 PMCID: PMC7957060 DOI: 10.3389/fbioe.2021.639070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Microfluidic technology enables recapitulation of organ-level physiology to answer pertinent questions regarding biological systems that otherwise would remain unanswered. We have previously reported on the development of a novel product consisting of human placental cells (PLC) engineered to overexpress a therapeutic factor VIII (FVIII) transgene, mcoET3 (PLC-mcoET3), to treat Hemophilia A (HA). Here, microfluidic devices were manufactured to model the physiological shear stress in liver sinusoids, where infused PLC-mcoET3 are thought to lodge after administration, to help us predict the therapeutic outcome of this novel biological strategy. In addition to the therapeutic transgene, PLC-mcoET3 also constitutively produce endogenous FVIII and von Willebrand factor (vWF), which plays a critical role in FVIII function, immunogenicity, stability, and clearance. While vWF is known to respond to flow by changing conformation, whether and how shear stress affects the production and secretion of vWF and FVIII has not been explored. We demonstrated that exposure of PLC-mcoET3 to physiological levels of shear stress present within the liver sinusoids significantly reduced mRNA levels and secreted FVIII and vWF when compared to static conditions. In contrast, mRNA for the vector-encoded mcoET3 was unaltered by flow. To determine the mechanism responsible for the observed decrease in FVIII and vWF mRNA, PCR arrays were performed to evaluate expression of genes involved in shear mechanosensing pathways. We found that flow conditions led to a significant increase in KLF2, which induces miRNAs that negatively regulate expression of FVIII and vWF, providing a mechanistic explanation for the reduced expression of these proteins in PLC under conditions of flow. In conclusion, microfluidic technology allowed us to unmask novel pathways by which endogenous FVIII and vWF are affected by shear stress, while demonstrating that expression of the therapeutic mcoET3 gene will be maintained in the gene-modified PLCs upon transplantation, irrespective of whether they engraft within sites that expose them to conditions of shear stress.
Collapse
Affiliation(s)
- Brady Trevisan
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alshaimaa Morsi
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Julio Aleman
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jordan Shields
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew M Farland
- Department of Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleks Skardal
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|