1
|
Ali A, Azmat U, Khatoon A, Akbar K, Murtaza B, Ji Z, Irshad U, Su Z. From gene editing to tumor eradication: The CRISPR revolution in cancer therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:114-131. [PMID: 40250571 DOI: 10.1016/j.pbiomolbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Cancer continues to be a significant worldwide health concern, characterized by high rates of occurrence and death. Unfortunately, existing treatments frequently fall short of delivering satisfying therapeutic outcomes. Immunotherapy has ushered in a new era in the treatment of solid tumors, yet its effectiveness is still constrained and comes with unwanted side effects. The advancement of cutting-edge technology, propelled by gene analysis and manipulation at the molecular scale, shows potential for enhancing these therapies. The advent of genome editing technologies, including CRISPR-Cas9, can greatly augment the efficacy of cancer immunotherapy. This review explores the mechanism of CRISPR-Cas9-mediated genome editing and its wide range of tools. The study focuses on analyzing the effects of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy, specifically by gene knockdown or knockin. In addition, the study emphasizes the utilization of CRISPR-Cas9-based genome-wide screening to identify targets, the potential of spatial CRISPR genomics, and the extensive applications and difficulties of CRISPR-Cas9 in fundamental research, translational medicine, and clinical environments.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology Dalian, China
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Urooj Irshad
- Department of Zoology, Faculty of Sciences, Superior University, Lahore, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Liang A, Tao T, Chen J, Yang Y, Zhou X, Zhu X, Yu G. Immunocompetent tumor-on-a-chip: A translational tool for drug screening and cancer therapy. Crit Rev Oncol Hematol 2025; 210:104716. [PMID: 40194716 DOI: 10.1016/j.critrevonc.2025.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Tumor is one of the major diseases endangering human health while establishing an efficient in vitro tumor microenvironment (TME) model, which is an effective way to reveal the nature of the tumor and develop therapeutic methods. In recent years, due to the continuous development of lab-on-a-chip technology and tumor biology, various tumor-on-a-chip models applied to oncology research have emerged. Among them, the Immunotherapy-on-a-chip (ITOC) platform stands out with its ability to reflect immunological behavior in the TME. It is a class of in vitro tumor-on-a-chip with immune activity, which has good performance and the ability to reproduce TME. It can highly simulate the complex pathophysiological characteristics of tumors and be used to study various features related to tumor biological behavior. Currently, many advantageous functions and application values of ITOC platforms have been discovered and applied to tumor drug screening and development, tumor immunotherapy, and personalized therapy. In conclusion, the tumor-on-a-chip platform is a highly promising model for medical oncology research. In this review, the background of the ITOC platform, key factors for constructing an ideal ITOC platform, and the specific applications of ITOC platforms in tumor research and treatment are introduced.
Collapse
Affiliation(s)
- Anqi Liang
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China; The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Jiahui Chen
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yucong Yang
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| |
Collapse
|
3
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
6
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
7
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
8
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
9
|
Chernyavska M, Masoudnia M, Valerius T, Verdurmen WPR. Organ-on-a-chip models for development of cancer immunotherapies. Cancer Immunol Immunother 2023; 72:3971-3983. [PMID: 37923890 PMCID: PMC10700206 DOI: 10.1007/s00262-023-03572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Cancer immunotherapy has emerged as a promising approach in the treatment of diverse cancer types. However, the development of novel immunotherapeutic agents faces persistent challenges due to poor translation from preclinical to clinical stages. To address these challenges, the integration of microfluidic models in research efforts has recently gained traction, bridging the gap between in vitro and in vivo systems. This approach enables modeling of the complex human tumor microenvironment and interrogation of cancer-immune interactions. In this review, we analyze the current and potential applications of microfluidic tumor models in cancer immunotherapy development. We will first highlight current trends in the immunooncology landscape. Subsequently, we will discuss recent examples of microfluidic models applied to investigate mechanisms of immune-cancer interactions and for developing and screening cancer immunotherapies in vitro. First steps toward their validation for predicting human in vivo outcomes are discussed. Finally, promising opportunities that microfluidic tumor models offer are highlighted considering their advantages and current limitations, and we suggest possible next steps toward their implementation and integration into the immunooncology drug development process.
Collapse
Affiliation(s)
- M Chernyavska
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - M Masoudnia
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - T Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - W P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Huang L, Yang C, Chen Y, Deng H, Liao Z, Xiao H. CRISPR-Mediated Base Editing: Promises and Challenges for a Viable Oncotherapy Strategy. Hum Gene Ther 2023; 34:669-681. [PMID: 37276175 DOI: 10.1089/hum.2023.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Base editing technology, developed from the CRISPR/Cas9 system, is able to efficiently implement single-base substitutions at specific DNA or RNA sites without generating double-strand breaks with precision and efficiency. Point mutations account for 58% of disease-causing genetic mutations in humans, and single nucleotide variants are an important cause of tumorigenesis, and the advent of base editors offers new hope for the study or treatment of such diseases. Although it has some limitations, base editors have been continuously improved in terms of editing efficiency, specificity, and product purity since their development. In this review, we examine the main base editing technologies and discuss their applications and prospects in tumor research and therapy, as well as elaborate on their mode of delivery.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Chao Yang
- Department of Traditional Chinese Medicine Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Han Deng
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhi Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Giustarini G, Teng G, Pavesi A, Adriani G. Characterization of 3D heterocellular spheroids of pancreatic ductal adenocarcinoma for the study of cell interactions in the tumor immune microenvironment. Front Oncol 2023; 13:1156769. [PMID: 37519820 PMCID: PMC10375712 DOI: 10.3389/fonc.2023.1156769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies nowadays. The available chemo- and immunotherapies are often ineffective in treating PDAC due to its immunosuppressive and highly desmoplastic tumor immune microenvironment (TIME), which is hardly reproduced in the existing preclinical models. The PDAC TIME results from a peculiar spatial organization between different cell types. For this reason, developing new human models recapitulating the tissue organization and cell heterogeneity of PDAC is highly desirable. We developed human 3D heterocellular tumor spheroids of PDAC formed by cancer cells, endothelial cells, pancreatic stellate cells (PSC), and monocytes. As a control, we formed spheroids using immortalized epithelial pancreatic ductal cells (non-cancerous spheroids) with cellular heterogeneity similar to the tumor spheroids. Normal spheroids containing endothelial cells formed a complex 3D endothelial network significantly compromised in tumor spheroids. Monocyte/macrophages within the 4-culture tumor spheroids were characterized by a higher expression of CD163, CD206, PD-L1, and CD40 than those in the non-cancerous spheroids suggesting their differentiation towards an immunosuppressive phenotype. The heterocellular tumor spheroids presented a hypoxic core populated with PSC and monocytes/macrophages. The 4-culture tumor spheroids were characterized by spatial proximity of PSC and monocytes to the endothelial cells and a cytokine signature with increased concentrations of CXCL10, CCL2, and IL-6, which have been observed in PDAC patients and associated with poor survival. Further, 4-culture tumor spheroids decreased the concentrations of T-cell chemoattracting cytokines, i.e., CCL4, CCL5, and CXCL9, when compared with the non-cancerous spheroids, revealing a critical immunosuppressive feature of the different types of cells forming the tumor spheroids. Our results showed that the 4-culture tumor spheroids better resembled some critical features of patients' PDAC TIME than monoculture tumor spheroids. Using the proposed human 3D spheroid model for therapy testing at the preclinical stage may reveal pitfalls of chemo- and immuno-therapies to help the development of better anti-tumor therapies.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Germaine Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Naso G, Gkazi S, Georgiadis C, Jayarajan V, Jacków J, Fleck R, Allison L, Ogunbiyi O, McGrath J, Ilic D, Di W, Petrova A, Qasim W. Cytosine deaminase base editing to restore COL7A1 in dystrophic epidermolysis bullosa human:murine skin model. JID INNOVATIONS 2023; 3:100191. [DOI: 10.1016/j.xjidi.2023.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 02/22/2023] Open
|
13
|
Ngan Ngo TK, Kuo CH, Tu TY. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. BIOMICROFLUIDICS 2023; 17:011501. [PMID: 36647540 PMCID: PMC9840534 DOI: 10.1063/5.0108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite several extraordinary improvements in cancer immunotherapy, its therapeutic effectiveness against many distinct cancer types remains mostly limited and requires further study. Different microfluidic-based cancer immunotherapy-on-a-chip (ITOC) systems have been developed to help researchers replicate the tumor microenvironment and immune system. Numerous microfluidic platforms can potentially be used to perform various on-chip activities related to early clinical cancer immunotherapy processes, such as improving immune checkpoint blockade therapy, studying immune cell dynamics, evaluating cytotoxicity, and creating vaccines or organoid models from patient samples. In this review, we summarize the most recent advancements in the development of various microfluidic-based ITOC devices for cancer treatment niches and present future perspectives on microfluidic devices for immunotherapy research.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Biomedical Engineering Department, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yuan Tu
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Qasim W. Genome editing of therapeutic T cells. GENE AND GENOME EDITING 2021; 2:None. [PMID: 34977824 PMCID: PMC8688148 DOI: 10.1016/j.ggedit.2021.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
|
15
|
Lam M, Reales-Calderon JA, Ow JR, Adriani G, Pavesi A. In vitro 3D liver tumor microenvironment models for immune cell therapy optimization. APL Bioeng 2021; 5:041502. [PMID: 34632251 PMCID: PMC8492081 DOI: 10.1063/5.0057773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Despite diagnostic and therapeutic advances, liver cancer kills more than 18 million people every year worldwide, urging new strategies to model the disease and to improve the current therapeutic options. In vitro tumor models of human cancer continue to evolve, and they represent an important screening tool. However, there is a tremendous need to improve the physiological relevance and reliability of these in vitro models to fulfill today's research requirements for better understanding of cancer progression and treatment options at different stages of the disease. This review describes the hepatocellular carcinoma microenvironmental characteristics and illustrates the current immunotherapy strategy to fight the disease. Moreover, we present a recent collection of 2D and 3D in vitro liver cancer models and address the next generation of in vitro systems recapitulating the tumor microenvironment complexity in more detail.
Collapse
Affiliation(s)
- Maxine Lam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Jose Antonio Reales-Calderon
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
16
|
Healy K, Pavesi A, Parrot T, Sobkowiak MJ, Reinsbach SE, Davanian H, Tan AT, Aleman S, Sandberg JK, Bertoletti A, Sällberg Chen M. Human MAIT cells endowed with HBV specificity are cytotoxic and migrate towards HBV-HCC while retaining antimicrobial functions. JHEP Rep 2021; 3:100318. [PMID: 34377970 PMCID: PMC8327138 DOI: 10.1016/j.jhepr.2021.100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Virus-specific T cell dysfunction is a common feature of HBV-related hepatocellular carcinoma (HBV-HCC). Conventional T (ConT) cells can be redirected towards viral antigens in HBV-HCC when they express an HBV-specific receptor; however, their efficacy can be impaired by liver-specific physical and metabolic features. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the liver and can elicit potent intrahepatic effector functions. Here, we engineered ConT and MAIT cells to kill HBV expressing hepatoma cells and compared their functional properties. METHODS Donor-matched ConT and MAIT cells were engineered to express an HBV-specific T cell receptor (TCR). Cytotoxicity and hepatocyte homing potential were investigated using flow cytometry, real-time killing assays, and confocal microscopy in 2D and 3D HBV-HCC cell models. Major histocompatibility complex (MHC) class I-related molecule (MR1)-dependent and MR1-independent activation was evaluated in an Escherichia coli THP-1 cell model and by IL-12/IL-18 stimulation, respectively. RESULTS HBV TCR-MAIT cells demonstrated polyfunctional properties (CD107a, interferon [IFN] γ, tumour necrosis factor [TNF], and IL-17A) with strong HBV target sensitivity and liver-homing chemokine receptor expression when compared with HBV TCR-ConT cells. TCR-mediated lysis of hepatoma cells was comparable between the cell types and augmented in the presence of inflammation. Coculturing with HBV+ target cells in a 3D microdevice mimicking aspects of the liver microenvironment demonstrated that TCR-MAIT cells migrate readily towards hepatoma targets. Expression of an ectopic TCR did not affect the ability of the MAIT cells to be activated via MR1-presented bacterial antigens or IL-12/IL-18 stimulation. CONCLUSIONS HBV TCR-MAIT cells demonstrate anti-HBV functions without losing their endogenous antimicrobial mechanisms or hepatotropic features. Our results support future exploitations of MAIT cells for liver-directed immunotherapies. LAY SUMMARY Chronic HBV infection is a leading cause of liver cancer. T cell receptor (TCR)-engineered T cells are patients' immune cells that have been modified to recognise virus-infected and/or cancer cells. Herein, we evaluated whether mucosal-associated invariant T cells, a large population of unconventional T cells in the liver, could recognise and kill HBV infected hepatocytes when engineered with an HBV-specific TCR. We show that their effector functions may exceed those of conventional T cells currently used in the clinic, including antimicrobial properties and chemokine receptor profiles better suited for targeting liver tumours.
Collapse
Key Words
- 5-OP-RU, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil
- APC, allophycocyanin
- Adoptive cell transfer
- CAR, chimeric antigen receptor
- CCR, CC chemokine receptor
- CXCL, chemokine (CXC) ligand
- CXCR, CXC chemokine receptor
- ConT, conventional T
- DCI, dead cell index
- FMO, fluorescence minus one
- FSC, forward scatter
- HBV
- HCC
- HCC, hepatocellular carcinoma
- HLA, human leukocyte antigen
- IFN, interferon
- IR, irrelevant peptide
- MAIT cells
- MAIT, mucosal-associated invariant T
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- MR1, MHC class I-related molecule
- PBMC, peripheral blood mononuclear cell
- PE, phycoerythrin
- PMA, phorbol myristate acetate
- RT, room temperature
- SSC, side scatter
- TCR, T cell receptor
- TCR-T cells
- TNF, tumour necrosis function
- UMAP, Uniform Manifold Approximation and Projection
- VCAM-1, vascular cell adhesion molecule-1
- VLA-4, very late antigen-4
Collapse
Affiliation(s)
- Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, A∗STAR, Singapore
| | - Tiphaine Parrot
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Susanne E. Reinsbach
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anthony T. Tan
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Bertoletti
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | |
Collapse
|
17
|
Immunotherapy to get on point with base editing. Drug Discov Today 2021; 26:2350-2357. [PMID: 33857616 DOI: 10.1016/j.drudis.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Engineered immune cell therapy is revolutionising the field of cancer therapeutics. US Food and Drug Administration (FDA) approval of two chimeric antigen receptor (CAR)-T cell products for the treatment of haematological malignancies paved the way for individualised cancer treatment. However, multiple genetic edits will be required to improve the efficacy of CAR-T cell therapies if they are to treat refractory malignancies successfully, particularly solid tumours. Off-target effects of CRISPR-Cas9-mediated multiplex editing are likely to hinder its safety and application in the clinic. Novel base editing technologies offer a promising and safer alternative for simultaneous editing that could enhance allogeneic engineered immunotherapies for targeting solid tumours and other complex human diseases.
Collapse
|
18
|
Base-edited CAR T cells for combinational therapy against T cell malignancies. Leukemia 2021; 35:3466-3481. [PMID: 34035409 PMCID: PMC8632682 DOI: 10.1038/s41375-021-01282-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Targeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by 'T v T' fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in 'self-enrichment' yielding populations 99.6% TCR-/CD3-/CD7-. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic 'off-target' activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies.
Collapse
|