1
|
de Menezes YKT, Lee J, Cheng-Zhang JQ, Johnson MA, Ranatunga RN, Kemaladewi DU. Targeting Galectin-3 to modulate inflammation in LAMA2-deficient congenital muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642905. [PMID: 40161708 PMCID: PMC11952532 DOI: 10.1101/2025.03.12.642905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
LAMA2-deficient congenital muscular dystrophy (LAMA2-CMD) is a severe neuromuscular disorder characterized by muscle degeneration, chronic inflammation, and fibrosis. While inflammation is one the hallmarks of LAMA2-CMD, the immune cell composition in laminin-deficient muscles remains understudied. Consequently, targeted pharmacological intervention to reduce inflammation remains underexplored. Here, we characterized the immune landscape in the dyW mouse model of LAMA2-CMD using RNA sequencing and flow cytometry. Transcriptomic analysis of dyW quadriceps femoris muscle identified 2,143 differentially expressed genes, with most upregulated genes linked to immune-related pathways. Lgals3 (Galectin-3) was significantly upregulated and identified as a key upstream regulator of the immune-related pathways. Flow cytometry revealed elevated leukocyte (CD45⁺) infiltration, with macrophages as the predominant population. Pro-inflammatory (M1) macrophages were increased, whereas anti-inflammatory (M2) macrophages remained low, indicating persistent and unresolved inflammation. Notably, Galectin-3 + macrophages were significantly enriched, suggesting that Galectin-3 drives inflammation in LAMA2-CMD. Treatment of dyW mice with TD-139, a Galectin-3 inhibitor, reduced leukocyte infiltration, decreased Galectin-3 + macrophages, and shifted macrophage polarization toward an M2 anti-inflammatory profile. RNA sequencing of TD-139-treated dyW muscles showed upregulation of muscle contraction pathways and downregulation of fibrosis-related genes. These findings highlight Galectin-3 + macrophages as key contributors to LAMA2-CMD pathophysiology and support further exploration of TD-139 as a potential therapeutic strategy for LAMA2-CMD and other dystrophic conditions driven by chronic inflammation.
Collapse
|
2
|
Martins SG, Ribeiro V, Melo C, Paulino-Cavaco C, Antonini D, Dayalan Naidu S, Murtinheira F, Fonseca I, Saget B, Pita M, Fernandes DR, Gameiro Dos Santos P, Rodrigues G, Zilhão R, Herrera F, Dinkova-Kostova AT, Carlos AR, Thorsteinsdóttir S. Laminin-α2 chain deficiency in skeletal muscle causes dysregulation of multiple cellular mechanisms. Life Sci Alliance 2024; 7:e202402829. [PMID: 39379105 PMCID: PMC11463332 DOI: 10.26508/lsa.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
LAMA2, coding for the laminin-α2 chain, is a crucial ECM component, particularly abundant in skeletal muscle. Mutations in LAMA2 trigger the often-lethal LAMA2-congenital muscular dystrophy (LAMA2-CMD). Various phenotypes have been linked to LAMA2-CMD; nevertheless, the precise mechanisms that malfunction during disease onset in utero remain unknown. We generated Lama2-deficient C2C12 cells and found that Lama2-deficient myoblasts display proliferation, differentiation, and fusion defects, DNA damage, oxidative stress, and mitochondrial dysfunction. Moreover, fetal myoblasts isolated from the dy W mouse model of LAMA2-CMD display impaired differentiation and fusion in vitro. We also showed that disease onset during fetal development is characterized by a significant down-regulation of gene expression in muscle fibers, causing pronounced effects on cytoskeletal organization, muscle differentiation, and altered DNA repair and oxidative stress responses. Together, our findings provide unique insights into the critical importance of the laminin-α2 chain for muscle differentiation and muscle cell homeostasis.
Collapse
Affiliation(s)
- Susana G Martins
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vanessa Ribeiro
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Melo
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Paulino-Cavaco
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Fernanda Murtinheira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fonseca
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Bérénice Saget
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Pita
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo R Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Gameiro Dos Santos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriela Rodrigues
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Zilhão
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ana Rita Carlos
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Changes (CE3C) & CHANGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Liu Y, Tan D, Ma K, Luo H, Mao J, Luo J, Shen Q, Xu L, Yang S, Ge L, Guo Y, Zhang H, Xiong H. Lama1 upregulation prolongs the lifespan of the dy H/dy H mouse model of LAMA2-related congenital muscular dystrophy. J Genet Genomics 2024; 51:1066-1078. [PMID: 38777118 DOI: 10.1016/j.jgg.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3-deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible, and early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal the limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.
Collapse
Affiliation(s)
- Yidan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaiyue Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huaxia Luo
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China
| | - Jingping Mao
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jihang Luo
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qiang Shen
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing 100191, China
| | - Shiqi Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yuxuan Guo
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hong Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing 102600, China; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
4
|
Balakrishnan B, Altassan R, Budhraja R, Liou W, Lupo A, Bryant S, Mankouski A, Radenkovic S, Preston GJ, Pandey A, Boudina S, Kozicz T, Morava E, Lai K. AAV-based gene therapy prevents and halts the progression of dilated cardiomyopathy in a mouse model of phosphoglucomutase 1 deficiency (PGM1-CDG). Transl Res 2023; 257:1-14. [PMID: 36709920 PMCID: PMC10192047 DOI: 10.1016/j.trsl.2023.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Phosphoglucomutase 1 (PGM1) deficiency is recognized as the third most common N-linked congenital disorders of glycosylation (CDG) in humans. Affected individuals present with liver, musculoskeletal, endocrine, and coagulation symptoms; however, the most life-threatening complication is the early onset of dilated cardiomyopathy (DCM). Recently, we discovered that oral D-galactose supplementation improved liver disease, endocrine, and coagulation abnormalities, but does not alleviate the fatal cardiomyopathy and the associated myopathy. Here we report on left ventricular ejection fraction (LVEF) in 6 individuals with PGM1-CDG. LVEF was pathologically low in most of these individuals and varied between 10% and 65%. To study the pathobiology of the cardiac disease observed in PGM1-CDG, we constructed a novel cardiomyocyte-specific conditional Pgm2 gene (mouse ortholog of human PGM1) knockout (Pgm2 cKO) mouse model. Echocardiography studies corroborated a DCM phenotype with significantly reduced ejection fraction and left ventricular dilation similar to those seen in individuals with PGM1-CDG. Histological studies demonstrated excess glycogen accumulation and fibrosis, while ultrastructural analysis revealed Z-disk disarray and swollen/fragmented mitochondria, which was similar to the ultrastructural pathology in the cardiac explant of an individual with PGM1-CDG. In addition, we found decreased mitochondrial function in the heart of KO mice. Transcriptomic analysis of hearts from mutant mice demonstrated a gene signature of DCM. Although proteomics revealed only mild changes in global protein expression in left ventricular tissue of mutant mice, a glycoproteomic analysis unveiled broad glycosylation changes with significant alterations in sarcolemmal proteins including different subunits of laminin-211, which was confirmed by immunoblot analyses. Finally, augmentation of PGM1 in KO mice via AAV9-PGM1 gene replacement therapy prevented and halted the progression of the DCM phenotype.
Collapse
Affiliation(s)
- Bijina Balakrishnan
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Ruqaiah Altassan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Willisa Liou
- Electron Microscopy Core Facility, University of Utah, Salt Lake City, Utah, USA
| | - Arielle Lupo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Sarah Bryant
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Anastasiya Mankouski
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Silvia Radenkovic
- Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Graeme J Preston
- Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Tamas Kozicz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Anatomy, University of Pecs School of Medicine, Pecs, Hungary
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA; Department of Clinical Genomics, Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Medical Genetics, University of Pecs, School of Medicine, Pecs, Hungary
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA; Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
5
|
Arockiaraj AI, Johnson MA, Munir A, Ekambaram P, Lucas PC, McAllister-Lucas LM, Kemaladewi DU. CRISPRa-induced upregulation of human LAMA1 compensates for LAMA2-deficiency in Merosin-deficient congenital muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531347. [PMID: 36945402 PMCID: PMC10028808 DOI: 10.1101/2023.03.06.531347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Merosin-deficient congenital muscular dystrophy (MDC1A) is an autosomal recessive disorder caused by mutations in the LAMA2 gene, resulting in a defective form of the extracellular matrix protein laminin-α2 (LAMA2). Individuals diagnosed with MDC1A exhibit progressive muscle wasting and declining neuromuscular functions. No treatments for this disorder are currently available. We previously showed that postnatal Lama1 upregulation, achieved through CRISPR activation (CRISPRa), compensates for Lama2 deficiency and prevents neuromuscular pathophysiology in a mouse model of MDC1A. In this study, we assessed the feasibility of upregulating human LAMA1 as a potential therapeutic strategy for individuals with MDC1A, regardless of their mutations. We hypothesized that CRISPRa-mediated upregulation of human LAMA1 would compensate for the lack of LAMA2 and rescue cellular abnormalities in MDC1A fibroblasts. Global transcriptomic and pathway enrichment analyses of fibroblasts collected from individuals carrying pathogenic LAMA2 mutations, compared with healthy controls, indicated higher expression of transcripts encoding proteins that contribute to wound healing, including Transforming Growth Factor-β (TGF-β) and Fibroblast Growth Factor (FGF). These findings were supported by wound-healing assays indicating that MDC1A fibroblasts migrated significantly more rapidly than the controls. Subsequently, we treated the MDC1A fibroblasts with SadCas9-2XVP64 and sgRNAs targeting the LAMA1 promoter. We observed robust LAMA1 expression, which was accompanied by significant decreases in cell migration and expression of FGFR2, TGF-β2, and ACTA2, which are involved in the wound-healing mechanism in MDC1A fibroblasts. Collectively, our data suggest that CRISPRa-mediated LAMA1 upregulation may be a feasible mutation-independent therapeutic approach for MDC1A. This strategy might be adapted to address other neuromuscular diseases and inherited conditions in which strong compensatory mechanisms have been identified.
Collapse
Affiliation(s)
- Annie I. Arockiaraj
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Marie A. Johnson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Anushe Munir
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Prasanna Ekambaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Dwi U. Kemaladewi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
6
|
Abstract
Muscular dystrophies are a group of genetic disorders characterized by varying degrees of progressive muscle weakness and degeneration. They are clinically and genetically heterogeneous but share the common histological features of dystrophic muscle. There is currently no cure for muscular dystrophies, which is of particular concern for the more disabling and/or lethal forms of the disease. Through the years, several therapies have encouragingly been developed for muscular dystrophies and include genetic, cellular, and pharmacological approaches. In this chapter, we undertake a comprehensive exploration of muscular dystrophy therapeutics under current development. Our review includes antisense therapy, CRISPR, gene replacement, cell therapy, nonsense suppression, and disease-modifying small molecule compounds.
Collapse
|
7
|
McKee KK, Yurchenco PD. Amelioration of muscle and nerve pathology of Lama2-related dystrophy by AAV9-laminin-αLN-linker protein. JCI Insight 2022; 7:158397. [PMID: 35639486 PMCID: PMC9310540 DOI: 10.1172/jci.insight.158397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
LAMA2 deficiency, resulting from a defective or absent laminin α2 subunit, is a common cause of congenital muscular dystrophy. It is characterized by muscle weakness from myofiber degeneration and neuropathy from Schwann cell amyelination. Previously it was shown that transgenic muscle-specific expression of αLNNd, a laminin γ1–binding linker protein that enables polymerization in defective laminins, selectively ameliorates the muscle abnormality in mouse disease models. Here, adeno-associated virus was used to deliver linker mini-genes to dystrophic dy2J/dy2J mice for expression of αLNNd in muscle, or αLNNdΔG2′, a shortened linker, in muscle, nerve, and other tissues. Linker and laminin α2 levels were higher in αLNNdΔG2′-treated mice. Both αLNNd- and αLNNdΔG2′-treated mice exhibited increased forelimb grip strength. Further, αLNNdΔG2′-treated mice achieved hind limb and all-limb grip strength levels approaching those of WT mice as well as ablation of hind limb paresis and contractures. This was accompanied by restoration of sciatic nerve axonal envelopment and myelination. Improvement of muscle histology was evident in the muscle-specific αLNNd-expressing mice but more extensive in the αLNNdΔG2′-expressing mice. The results reveal that an αLN linker mini-gene, driven by a ubiquitous promoter, is superior to muscle-specific delivery because of its higher expression that extends to the peripheral nerve. These studies support a potentially novel approach of somatic gene therapy.
Collapse
Affiliation(s)
- Karen K McKee
- Department of Pathology & Laboratory Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, United States of America
| | - Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, United States of America
| |
Collapse
|
8
|
Crowe KE, Zygmunt DA, Heller K, Rodino-Klapac L, Noguchi S, Nishino I, Martin PT. Visualizing Muscle Sialic Acid Expression in the GNED207VTgGne-/- Cmah-/- Model of GNE Myopathy: A Comparison of Dietary and Gene Therapy Approaches. J Neuromuscul Dis 2022; 9:53-71. [PMID: 34511508 DOI: 10.3233/jnd-200575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND GNE myopathy (GNEM) is a rare, adult-onset, inclusion body myopathy that results from mutations in the GNE gene. GNE encodes UDP-GlcNAc epimerase/ManNAc-6 kinase, a protein with two enzymatic activities that comprise the committed step in biosynthesis of sialic acid (SA), an essential glycan that appears on the terminal positions of many extracellular oligosaccharide chains. These GNE mutations can cause a reduction of SA in many tissues, although pathology is restricted to skeletal muscles through a poorly understood mechanism. OBJECTIVE Despite recent advances in the field, it remains unclear which therapeutic avenue is most promising for the restoration of SA level in skeletal muscle affected by GNEM. Our objective was to assess dietary and gene therapy strategies for GNEM in Cmah-deficient GNED207VTgGne-/- mice, a model that allows for the visualization of orally delivered N-glycolylneuraminic acid (Neu5Gc), one of the two predominant SA forms in muscle. METHODS Methods included in situ physiology studies of the tibialis anterior muscle, studies of ambulation and limb grip strength, and muscle staining using MAA, SNA, and anti-Neu5Gc antibody, along with qPCR, qRT-PCR, western blot, and HPLC studies to assess virally introduced DNA, GNE gene expression, GNE protein expression, and SA expression. RESULTS We found that a diet enriched in Neu5Gc-containing glycoproteins had no impact on Neu5Gc immunostaining in muscles of GNEM model mice. Delivery of a single high dose oral Neu5Gc therapy, however, did increase Neu5Gc immunostaining, though to levels below those found in wild type mice. Delivery of a single dose of GNE gene therapy using a recombinant Adeno Associated Virus (rAAV) vector with a liver-specific or a muscle-specific promoter both caused increased muscle Neu5Gc immunostaining that exceeded that seen with single dose monosaccharide therapy. CONCLUSIONS Our findings indicate that dietary loading of Neu5Gc-containing glycoproteins is not effective in increasing muscle Neu5Gc expression, while single dose oral Neu5Gc monosaccharide or GNE gene therapy are. Neu5Gc immunostaining, however, showed greater changes than did lectin staining or HPLC analysis. Taken together, these results suggest that Neu5Gc immunostaining may be more sensitive technique to follow SA expression than other more commonly used methods and that liver expression of GNE may contribute overall muscle SA content.
Collapse
Affiliation(s)
- Kelly E Crowe
- Department of Biology, Mount St. Joseph University Cincinnati, OH, USA
| | - Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute Children's Drive Columbus, OH, USA
| | - Kristin Heller
- Center for Gene Therapy, Abigail Wexner Research Institute Children's Drive Columbus, OH, USA
| | - Louise Rodino-Klapac
- Center for Gene Therapy, Abigail Wexner Research Institute Children's Drive Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine Columbus, OH, USA
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience Tokyo, Japan
| | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute Children's Drive Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine Columbus, OH, USA
| |
Collapse
|