1
|
Cerveró-Varona A, Prencipe G, Peserico A, Canciello A, House AH, Santos HA, Perugini M, Sulcanese L, Takano C, Miki T, Iannetta A, Russo V, Mattioli M, Barboni B. Amniotic epithelial Cell microvesicles uptake inhibits PBMCs and Jurkat cells activation by inducing mitochondria-dependent apoptosis. iScience 2025; 28:111830. [PMID: 39967871 PMCID: PMC11834128 DOI: 10.1016/j.isci.2025.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Amniotic epithelial cells (AECs) exhibit significant immunomodulatory and pro-regenerative properties, largely due to their intrinsic paracrine functions that are currently harnessed through the collection of their secretomes. While there is increasing evidence of the role of bioactive components freely secreted or carried by exosomes, the bioactive cargo of AEC microvesicles (MVs) and their crosstalk with the immune cells remains to be fully explored. We showed that under intrinsic conditions or in response to LPS, AEC-derived MV carries components such as lipid-mediated signaling molecules, ER, and mitochondria. They foster the intra/interspecific mitochondrial transfer into immune cells (PBMCs and Jurkat cells) in vitro and in vivo on the zebrafish larvae model of injury. The internalization of MV cargoes through macropinocytosis induces hyperpolarization of PBMC mitochondrial membranes and triggers MV-mediated apoptosis. This powerful immune suppressive mechanism triggered by AEC-MV cargo delivery paves the way for controlled and targeted cell-free therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Andrew H. House
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science (HiLIFE), Biocenter 3, Viikinkaari 1, 00790 Helsinki, Finland
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Monia Perugini
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Annamaria Iannetta
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mauro Mattioli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
2
|
Newmyer S, Ssemadaali MA, Radhakrishnan H, Javitz HS, Bhatnagar P. Electrically regulated cell-based intervention for viral infections. Bioeng Transl Med 2023; 8:e10434. [PMID: 36925710 PMCID: PMC10013824 DOI: 10.1002/btm2.10434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
This work reports on an engineered cell that-when electrically stimulated-synthesizes a desired protein, that is, ES-Biofactory. The platform has been used to express interferon (IFN)-β as a universal antiviral protein. Compelling evidence indicates the inevitability of new pandemics and drives the need for a pan-viral intervention that may be quickly deployed while more specific vaccines are in development. Toward this goal, a fast-growing mammalian cell (Chassis) has been engineered with multiple synthetic elements. These include-(1) a voltage-gated Ca2+ channel (Voltage-Sensor) that, upon sensing the electric field, activates the (2) Ca2+-mediated signaling pathway (Actuator) to upregulate (3) IFN-β, via an engineered antiviral transgene (Effector), that is, ES-Biofactory➔IFN-β. The antiviral effects of the ES-Biofactory➔IFN-β have been validated on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells. The irradiated ES-Biofactory, that does not exhibit oncogenic capacity, continues to exert antiviral effect. The resulting ES-Biofactory➔IFN-β uses a novel signaling pathway that, unlike the natural IFN synthesis pathway, is not subject to viral interference. Once clinically validated, the ES-Biofactory will be a universal antiviral cell therapy that can be immediately deployed in the event of an outbreak. The platform may also be useful in treating other diseases including cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Sherri Newmyer
- Biosciences DivisionSRI InternationalMenlo ParkCaliforniaUSA
| | | | | | | | | |
Collapse
|
3
|
Laggner M, Acosta GS, Kitzmüller C, Copic D, Gruber F, Altenburger LM, Vorstandlechner V, Gugerell A, Direder M, Klas K, Bormann D, Peterbauer A, Shibuya A, Bohle B, Ankersmit HJ, Mildner M. The secretome of irradiated peripheral blood mononuclear cells attenuates activation of mast cells and basophils. EBioMedicine 2022; 81:104093. [PMID: 35671621 PMCID: PMC9168057 DOI: 10.1016/j.ebiom.2022.104093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND IgE-mediated hypersensitivity is becoming increasingly prevalent and activation of mast cells and basophils represent key events in the pathophysiology of allergy. We have previously reported that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) exerts beneficial anti-inflammatory effects. Yet, its ability to alleviate allergic symptoms has not been investigated so far. METHODS Several experimental in vitro and in vivo models have been used in this basic research study. A murine ear swelling model was used to study the effects of PBMCsec on 48/80-induced mast cell degranulation in vivo. The transcriptional profile of murine mast cells was analysed by single cell RNA sequencing (scRNAseq). Mast cell activation was studied in vitro using primary skin mast cells. Basophils from individuals allergic to birch pollens were used to investigate basophile activation by allergens. Transcriptomic and lipidomic analyses were used to identify mRNA expression and lipid species present in PBMCsec, respectively. FINDINGS Topical application of PBMCsec on mouse ears (C57BL/6) significantly reduced tissue swelling following intradermal injection of compound 48/80, an inducer of mast cell degranulation. Single cell RNA sequencing of PBMCsec-treated murine dermal mast cells (Balb/c) revealed a downregulation of genes involved in immune cell degranulation and Fc-receptor signalling. In addition, treatment of primary human dermal mast cells with PBMCsec strongly inhibited compound 48/80- and α-IgE-induced mediator release in vitro. Furthermore, PBMCsec remarkably attenuated allergen driven activation of basophils from allergic individuals. Transcriptomic analysis of these basophils showed that PBMCsec downregulated a distinct gene battery involved in immune cell degranulation and Fc-receptor signalling, corroborating results obtained from dermal mast cells. Finally, we identified the lipid fraction of PBMCsec as the major active ingredient involved in effector cell inhibition. INTERPRETATION Collectively, our data demonstrate that PBMCsec is able to reduce activation of mast cells and basophils, encouraging further studies on the potential use of PBMCsec for treating allergy. FUNDING Austrian Research Promotion Agency (852748 and 862068, 2015-2019), Vienna Business Agency (2343727, 2018-2020), Aposcience AG, Austrian Federal Ministry of Education, Science and Research (SPA06/055), Danube Allergy Research Cluster, Austrian Science Fund (I4437 and P32953).
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Gabriela Sánchez Acosta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | | | - Vera Vorstandlechner
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria; Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alfred Gugerell
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria
| | - Anja Peterbauer
- Aposcience AG, Vienna, Austria; Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria; Aposcience AG, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|