1
|
Gutierrez-Guerrero A, Périan S, Leray A, Martinello C, Abrey Recalde MJ, Costa C, Herrero CI, Bouzelha M, Alvarez-Dorta D, Gouin SG, Ayuso E, Adjali O, Büning H, Deniaud D, Mével M, Verhoeyen E. Ligand-modified rAAV6 vectors with nanoblades allow high-level gene knockin in HSPCs without compromising cell survival. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102495. [PMID: 40125271 PMCID: PMC11930132 DOI: 10.1016/j.omtn.2025.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Nanoblades are viral particles loaded with the Cas9 protein complexed with gRNA, which allowed efficient gene editing in hematopoietic stem and progenitor cells (HSPCs). Combined with recombinant adeno-associated vector (rAAV) 6 containing two homologous arms to a gene locus resulted in 50% of expression cassette knockin into HSPCs. However, high effective doses of rAAV6 induced HSPC cell death. Here, we demonstrated that, at high doses, rAAV2 was much less toxic for template DNA delivery and allowed transduction levels in HSPCs equivalent to rAAV6. To improve donor template delivery, rAAV2 and rAAV6 were chemically bio-conjugated with a mannose ligand, via the lysine or tyrosine amino acid residues exposed at the adeno-associated vector (AAV) capsid surface. High-level transduction of HSPCs with mannose-coupled rAAV6 vectors accompanied by a remarkable lower toxicity was achieved as compared to control rAAV6 in correlation with highly reduced p53 pathway activation. Mannose-conjugated rAAV6 combined with nanoblades allowed efficient gene knockin and increased survival of HSPCs from 10% to 80% as compared to the unmodified rAAV6 even in the most immature CD34+CD38lowCD90+ hematopoietic stem cell (HSC) population. Summarizing, mannose-conjugated rAAV6 maintained high-level donor mediated gene knockin when combined with nanoblades without inducing significant toxicity for the HSPCs, an important feature for clinical translation of HSPC gene-editing strategies.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Séverine Périan
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Aurélien Leray
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | | | - Maria Jimena Abrey Recalde
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Caroline Costa
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Cecilia Iglesias Herrero
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | - Eduard Ayuso
- Nantes Université, TaRGeT, Translational Research for gene Therapies, CHU de Nantes, INSERM UMR 1089, 44200 Nantes, France
| | - Oumeya Adjali
- Nantes Université, TaRGeT, Translational Research for gene Therapies, CHU de Nantes, INSERM UMR 1089, 44200 Nantes, France
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - David Deniaud
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Mathieu Mével
- Nantes Université, TaRGeT, Translational Research for gene Therapies, CHU de Nantes, INSERM UMR 1089, 44200 Nantes, France
| | - Els Verhoeyen
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
2
|
Zanganeh S, Zahedi AM, Sattarzadeh Bardsiri M, Bazi A, Bastanifard M, Shool S, Kouhbananinejad SM, Farsinejad A, Afgar A, Shahabi A, Mirzaei-Parsa MJ. Recent advances and applications of the CRISPR-Cas system in the gene therapy of blood disorders. Gene 2024; 931:148865. [PMID: 39168259 DOI: 10.1016/j.gene.2024.148865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Saeed Zanganeh
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Mohammad Zahedi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahla Sattarzadeh Bardsiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Bastanifard
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Shool
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Alireza Farsinejad
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Shahabi
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
3
|
Wang Y, Liu J, Liu T, An X, Huang L, Li J, Zhang Y, Xiang Y, Xiao L, Yi W, Qin J, Liu L, Wang C, Yu J. Pyruvate kinase deficiency and PKLR gene mutations: Insights from molecular dynamics simulation analysis. Heliyon 2024; 10:e26368. [PMID: 38434380 PMCID: PMC10904247 DOI: 10.1016/j.heliyon.2024.e26368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Pyruvate kinase deficiency is a rare hereditary erythrocyte enzyme disease caused by mutations in the pyruvate kinase liver and red blood cell gene. The clinical presentations of pyruvate kinase deficiency are significantly heterogeneous, ranging from just mild anemia to hemolytic crisis or even death. The proband in our study was a 2-year-old girl for severe skin and scleral icterus with progressive aggravation. We collected the family's data for further analysis. Whole exome genome sequencing of the pedigree revealed a novel compound heterozygous mutation, c.1097del (p.P366Lfs*12) and c.1493G > A (p.R498H), in the pyruvate kinase liver and red blood cell gene. Furthermore, molecular dynamics simulations were employed to uncover differences between the wild type and mutant pyruvate kinase liver and red blood cell proteins, focusing on structural stability, protein flexibility, secondary structure, and overall conformation. The combined bioinformatic tools were also utilised to assess the effects of the missense mutation on protein function. Thereafter, wild type and mutant plasmids were constructed and transfected into 293T cells, and Western blot assay was conducted to validate the impact of the mutations on the expression of pyruvate kinase liver and red blood cell protein. The data presented in our study enriches the genotype database and provides evidence for genetic counseling and molecular diagnosis of pyruvate kinase deficiency.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiaqi Liu
- Shanghai Cinopath Medical Testing Co Ltd, Shanghai 200000, China
| | - Tao Liu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiacheng Li
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Yongjie Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Yan Xiang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Li Xiao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Weijia Yi
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiebin Qin
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Lili Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Cuilan Wang
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| |
Collapse
|
4
|
van Dijk MJ, de Wilde JRA, Bartels M, Kuo KHM, Glenthøj A, Rab MAE, van Beers EJ, van Wijk R. Activation of pyruvate kinase as therapeutic option for rare hemolytic anemias: Shedding new light on an old enzyme. Blood Rev 2023; 61:101103. [PMID: 37353463 DOI: 10.1016/j.blre.2023.101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Novel developments in therapies for various hereditary hemolytic anemias reflect the pivotal role of pyruvate kinase (PK), a key enzyme of glycolysis, in red blood cell (RBC) health. Without PK catalyzing one of the final steps of the Embden-Meyerhof pathway, there is no net yield of adenosine triphosphate (ATP) during glycolysis, the sole source of energy production required for proper RBC function and survival. In hereditary hemolytic anemias, RBC health is compromised and therefore lifespan is shortened. Although our knowledge on glycolysis in general and PK function in particular is solid, recent advances in genetic, molecular, biochemical, and metabolic aspects of hereditary anemias have improved our understanding of these diseases. These advances provide a rationale for targeting PK as therapeutic option in hereditary hemolytic anemias other than PK deficiency. This review summarizes the knowledge, rationale, (pre)clinical trials, and future advances of PK activators for this important group of rare diseases.
Collapse
Affiliation(s)
- Myrthe J van Dijk
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Jonathan R A de Wilde
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marije Bartels
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Kevin H M Kuo
- Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Andreas Glenthøj
- Danish Red Blood Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Minke A E Rab
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Hematology, Erasmus Medical Center Rotterdam, the Netherlands
| | - Eduard J van Beers
- Center for Benign Hematology, Thrombosis and Hemostasis - Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Richard van Wijk
- Department of Central Diagnostic Laboratory - Research, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Zhang H, Yan J, Lu Z, Zhou Y, Zhang Q, Cui T, Li Y, Chen H, Ma L. Deep sampling of gRNA in the human genome and deep-learning-informed prediction of gRNA activities. Cell Discov 2023; 9:48. [PMID: 37193681 DOI: 10.1038/s41421-023-00549-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023] Open
Abstract
Life science studies involving clustered regularly interspaced short palindromic repeat (CRISPR) editing generally apply the best-performing guide RNA (gRNA) for a gene of interest. Computational models are combined with massive experimental quantification on synthetic gRNA-target libraries to accurately predict gRNA activity and mutational patterns. However, the measurements are inconsistent between studies due to differences in the designs of the gRNA-target pair constructs, and there has not yet been an integrated investigation that concurrently focuses on multiple facets of gRNA capacity. In this study, we analyzed the DNA double-strand break (DSB)-induced repair outcomes and measured SpCas9/gRNA activities at both matched and mismatched locations using 926,476 gRNAs covering 19,111 protein-coding genes and 20,268 non-coding genes. We developed machine learning models to forecast the on-target cleavage efficiency (AIdit_ON), off-target cleavage specificity (AIdit_OFF), and mutational profiles (AIdit_DSB) of SpCas9/gRNA from a uniformly collected and processed dataset by deep sampling and massively quantifying gRNA capabilities in K562 cells. Each of these models exhibited superlative performance in predicting SpCas9/gRNA activities on independent datasets when benchmarked with previous models. A previous unknown parameter was also empirically determined regarding the "sweet spot" in the size of datasets used to establish an effective model to predict gRNA capabilities at a manageable experimental scale. In addition, we observed cell type-specific mutational profiles and were able to link nucleotidylexotransferase as the key factor driving these outcomes. These massive datasets and deep learning algorithms have been implemented into the user-friendly web service http://crispr-aidit.com to evaluate and rank gRNAs for life science studies.
Collapse
Affiliation(s)
- Heng Zhang
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- AIdit Therapeutics, Hangzhou, Zhejiang, China
| | - Jianfeng Yan
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- AIdit Therapeutics, Hangzhou, Zhejiang, China
| | - Zhike Lu
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yangfan Zhou
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | | | | | - Yini Li
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Hui Chen
- AIdit Therapeutics, Hangzhou, Zhejiang, China
| | - Lijia Ma
- Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Fañanas-Baquero S, Morín M, Fernández S, Ojeda-Perez I, Dessy-Rodriguez M, Giurgiu M, Bueren JA, Moreno-Pelayo MA, Segovia JC, Quintana-Bustamante O. Specific correction of pyruvate kinase deficiency-causing point mutations by CRISPR/Cas9 and single-stranded oligodeoxynucleotides. Front Genome Ed 2023; 5:1104666. [PMID: 37188156 PMCID: PMC10175809 DOI: 10.3389/fgeed.2023.1104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Pyruvate kinase deficiency (PKD) is an autosomal recessive disorder caused by mutations in the PKLR gene. PKD-erythroid cells suffer from an energy imbalance caused by a reduction of erythroid pyruvate kinase (RPK) enzyme activity. PKD is associated with reticulocytosis, splenomegaly and iron overload, and may be life-threatening in severely affected patients. More than 300 disease-causing mutations have been identified as causing PKD. Most mutations are missense mutations, commonly present as compound heterozygous. Therefore, specific correction of these point mutations might be a promising therapy for the treatment of PKD patients. We have explored the potential of precise gene editing for the correction of different PKD-causing mutations, using a combination of single-stranded oligodeoxynucleotides (ssODN) with the CRISPR/Cas9 system. We have designed guide RNAs (gRNAs) and single-strand donor templates to target four different PKD-causing mutations in immortalized patient-derived lymphoblastic cell lines, and we have detected the precise correction in three of these mutations. The frequency of the precise gene editing is variable, while the presence of additional insertions/deletions (InDels) has also been detected. Significantly, we have identified high mutation-specificity for two of the PKD-causing mutations. Our results demonstrate the feasibility of a highly personalized gene-editing therapy to treat point mutations in cells derived from PKD patients.
Collapse
Affiliation(s)
- Sara Fañanas-Baquero
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Matías Morín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sergio Fernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isabel Ojeda-Perez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miruna Giurgiu
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Juan A. Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miguel Angel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jose Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
7
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
8
|
Wang Y, Huang L, Zhu Y, An X, Li J, Zhen J, Yu J. De novo variations of ANK1 gene caused hereditary spherocytosis in two Chinese children by affecting pre-mRNA splicing. BMC Pediatr 2023; 23:23. [PMID: 36647015 PMCID: PMC9841706 DOI: 10.1186/s12887-022-03795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS Hereditary spherocytosis (HS) is one of the most common hereditary haemolytic disorders. Here, two unrelated families with the probands displaying typical manifestations of HS were enrolled. Our study aimed to characterize the effect of two novel variants in HS patients on gene splicing to help minimize the rate of misdiagnosis of HS and enhance clinicians' understanding of the disease. PARTICIPANTS AND METHODS A retrospective review was conducted. Peripheral blood samples were collected from all the family members, and genomic DNA was extracted for genetic diagnostics. First, high-throughput sequencing technology was used for the preliminary screening of candidate causative variants. Thereafter, the variants were verified via Sanger sequencing. Furthermore, a pathogenicity analysis of the detected variants was performed including in silico prediction and in vitro experiments. We constructed matched wild-type and mutant-type minigene plasmid of ANK1 based on HEK293T cells to address the effects of variants on mRNA splicing. RESULTS The c.1305 + 2 T > A (family1) and c.1305 + 2del (family2) variants were detected in the ANK1 gene. These two de novo mutations described by us which have not been reported prior to this study. Moreover, the validation results of splicing reporter systems revealed that the intronic mutations resulted in abnormal pre-mRNA splicing. Specifically, the minigene plasmid expressing the c.1305 + 2 T > A variant transcribed the two aberrant transcripts: r.1305_1306ins1305 + 1_1305 + 229 and r.1305_1306ins1305 + 1_1305 + 552. The minigene plasmid expressing c.1305 + 2del transcribed the two aberrant transcripts: r.1305_1306ins1305 + 1_1305 + 228 and r.1305_1306ins1305 + 1_1305 + 551. CONCLUSION The two de novo variants identified in the ANK1 gene were the genetic etiology of the probands with HS in our study. Our findings further enrich the HS genotype database and provide a basis for genetic counselling and molecular diagnosis.
Collapse
Affiliation(s)
- Yang Wang
- grid.488412.3Department of Hematology and Oncology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, 136 Zhong shan er lu, Yu zhong district, Chongqing, 400014 China ,grid.488412.3Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lan Huang
- grid.488412.3Department of Hematology and Oncology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, 136 Zhong shan er lu, Yu zhong district, Chongqing, 400014 China ,grid.488412.3Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhu
- grid.488412.3Department of Hematology and Oncology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, 136 Zhong shan er lu, Yu zhong district, Chongqing, 400014 China ,grid.488412.3Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xizhou An
- grid.488412.3Department of Hematology and Oncology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, 136 Zhong shan er lu, Yu zhong district, Chongqing, 400014 China
| | - Jiacheng Li
- grid.488412.3Department of Hematology and Oncology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, 136 Zhong shan er lu, Yu zhong district, Chongqing, 400014 China ,grid.488412.3Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jiangwei Zhen
- grid.440186.fDepartment of Endocrinology, Shenzhen Samii International Medical Center, Shenzhen, 518000 China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhong shan er lu, Yu zhong district, Chongqing, 400014, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
9
|
Chisholm O, Critchley H. Future directions in regulatory affairs. Front Med (Lausanne) 2023; 9:1082384. [PMID: 36698838 PMCID: PMC9868628 DOI: 10.3389/fmed.2022.1082384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The field of regulatory affairs deals with the regulatory requirements for marketing authorization of therapeutic products. This field is facing a myriad of forces impacting all aspects of the development, regulation and value proposition of new therapeutic products. Changes in global megatrends, such as geopolitical shifts and the rise of the green economy, have emphasized the importance of manufacturing and supply chain security, and reducing the environmental impacts of product development. Rapid changes due to advances in science, digital disruption, a renewed focus on the centrality of the patient in all stages of therapeutic product development and greater collaboration between national regulatory authorities have been accelerated by the COVID-19 pandemic. This article will discuss the various trends that are impacting the development of new therapies for alleviating disease and how these trends therefore impact on the role of the regulatory affairs professional. We discuss some of the challenges and provide insights for the regulatory professional to remain at the forefront of these trends and prepare for their impacts on their work.
Collapse
Affiliation(s)
- Orin Chisholm
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
10
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
11
|
Kotmayer L, Romero‐Moya D, Marin‐Bejar O, Kozyra E, Català A, Bigas A, Wlodarski MW, Bödör C, Giorgetti A. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol 2022; 199:482-495. [PMID: 35753998 PMCID: PMC9796058 DOI: 10.1111/bjh.18330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.
Collapse
Affiliation(s)
- Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Damia Romero‐Moya
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Oskar Marin‐Bejar
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Emilia Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Albert Català
- Department of Hematology and OncologyInstitut de Recerca Sant Joan de DéuHospital Sant Joan de DeuBarcelonaSpain,Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
| | - Anna Bigas
- Cancer Research ProgramInstitut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del MarBarcelonaSpain,Josep Carreras Research Institute (IJC), BadalonaBarcelonaSpain
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain,Fondazione Pisana Per la Scienza ONLUS (FPS)San Giuliano TermeItaly,Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health SciencesBarcelona UniversityBarcelonaSpain
| |
Collapse
|
12
|
Quintana-Bustamante O, Fañanas-Baquero S, Dessy-Rodriguez M, Ojeda-Pérez I, Segovia JC. Gene Editing for Inherited Red Blood Cell Diseases. Front Physiol 2022; 13:848261. [PMID: 35418876 PMCID: PMC8995967 DOI: 10.3389/fphys.2022.848261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Today gene therapy is a real therapeutic option to address inherited hematological diseases that could be beneficial for thousands of patients worldwide. Currently, gene therapy is used to treat different monogenic hematological pathologies, including several red blood cell diseases such as β-thalassemia, sickle cell disease and pyruvate kinase deficiency. This approach is based on addition gene therapy, which consists of the correction of hematopoietic stem cells (HSCs) using lentiviral vectors, which integrate a corrected version of the altered gene. Lentivirally-corrected HSCs generate healthy cells that compensate for the deficiency caused by genetic mutations. Despite its successful results, this approach lacks both control of the integration of the transgene into the genome and endogenous regulation of the therapeutic gene, both of which are important aspects that might be a cause for concern. To overcome these limitations, gene editing is able to correct the altered gene through more precise and safer approaches. Cheap and easy-to-design gene editing tools, such as the CRISPR/Cas9 system, allow the specific correction of the altered gene without affecting the rest of the genome. Inherited erythroid diseases, such as thalassemia, sickle cell disease and Pyruvate Kinase Deficiency, have been the test bed for these gene editing strategies, and promising results are currently being seen. CRISPR/Cas9 system has been successfully used to manipulate globin regulation to re-activate fetal globin chains in adult red blood cells and to compensate for hemoglobin defects. Knock-in at the mutated locus to express the therapeutic gene under the endogenous gene regulatory region has also been accomplished successfully. Thanks to the lessons learned from previous lentiviral gene therapy research and trials, gene editing for red blood cell diseases is rapidly moving from its proof-of-concept to its first exciting results in the clinic. Indeed, patients suffering from β-thalassemia and sickle cell disease have already been successfully treated with gene editing, which will hopefully inspire the use of gene editing to cure erythroid disorders and many other inherited diseases in the near future.
Collapse
Affiliation(s)
- Oscar Quintana-Bustamante
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Sara Fañanas-Baquero
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Isabel Ojeda-Pérez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| | - Jose-Carlos Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Unidad Mixta de Terapias Avanzadas, Madrid, Spain
| |
Collapse
|
13
|
Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Adv Drug Deliv Rev 2022; 181:114087. [PMID: 34942274 PMCID: PMC8844242 DOI: 10.1016/j.addr.2021.114087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.
Collapse
Affiliation(s)
- Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, US
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, US,Corresponding Authors: (Y. Li) and (Q. Xu)
| |
Collapse
|