1
|
Coughlin GM, Borsos M, Barcelona BH, Appling N, Mayfield AMH, Mackey ED, Eser RA, Jackson CR, Chen X, Kumar SR, Gradinaru V. Spatial genomics of AAV vectors reveals mechanism of transcriptional crosstalk that enables targeted delivery of large genetic cargo. Nat Biotechnol 2025:10.1038/s41587-025-02565-4. [PMID: 40113953 DOI: 10.1038/s41587-025-02565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Cell-type-specific regulatory elements such as enhancers can direct expression of recombinant adeno-associated viruses (AAVs) to specific cell types, but this approach is limited by the relatively small packaging capacity of AAVs. In this study, we used spatial genomics to show that transcriptional crosstalk between individual AAV genomes provides a general method for cell-type-specific expression of large cargo by separating distally acting regulatory elements into a second AAV genome. We identified and profiled transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. We developed spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue, and we demonstrate here that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leveraged transcriptional crosstalk to drive expression of a 3.2-kb Cas9 cargo in a cell-type-specific manner with systemically administered engineered AAVs, and we demonstrate AAV-delivered, minimally invasive, cell-type-specific gene editing in wild-type mice that recapitulates known disease phenotypes.
Collapse
Affiliation(s)
- Gerard M Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Máté Borsos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bre'Anna H Barcelona
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nathan Appling
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Acacia M H Mayfield
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elisha D Mackey
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rana A Eser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cameron R Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs inhibition improves sequential gene insertion of the full-length CFTR cDNA in airway stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102339. [PMID: 39398224 PMCID: PMC11470261 DOI: 10.1016/j.omtn.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two-halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558, which inhibit non-homologous end-joining (NHEJ) and micro-homology mediated end-joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2- to 3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Stack JT, Rayner RE, Nouri R, Suarez CJ, Kim SH, Kanke KL, Vetter TA, Cormet-Boyaka E, Vaidyanathan S. DNA-PKcs Inhibition Improves Sequential Gene Insertion of the Full-Length CFTR cDNA in Airway Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607571. [PMID: 39185207 PMCID: PMC11343149 DOI: 10.1101/2024.08.12.607571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although many people with CF (pwCF) are treated using CFTR modulators, some are non-responsive due to their genotype or other uncharacterized reasons. Autologous airway stem cell therapies, in which the CFTR cDNA has been replaced, may enable a durable therapy for all pwCF. Previously, CRISPR-Cas9 with two AAVs was used to sequentially insert two halves of the CFTR cDNA and an enrichment cassette into the CFTR locus. However, the editing efficiency was <10% and required enrichment to restore CFTR function. Further improvement in gene insertion may enhance cell therapy production. To improve CFTR cDNA insertion in human airway basal stem cells (ABCs), we evaluated the use of the small molecules AZD7648 and ART558 which inhibit non-homologous end joining (NHEJ) and micro-homology mediated end joining (MMEJ). Adding AZD7648 alone improved gene insertion by 2-3-fold. Adding both ART558 and AZD7648 improved gene insertion but induced toxicity. ABCs edited in the presence of AZD7648 produced differentiated airway epithelial sheets with restored CFTR function after enrichment. Adding AZD7648 did not increase off-target editing. Further studies are necessary to validate if AZD7648 treatment enriches cells with oncogenic mutations.
Collapse
Affiliation(s)
- Jacob T. Stack
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Reza Nouri
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Carlos J. Suarez
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Karen L. Kanke
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | - Tatyana A. Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
| | | | - Sriram Vaidyanathan
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Coughlin GM, Borsos M, Appling N, Barcelona BH, Mayfield AMH, Mackey ED, Eser RA, Chen X, Kumar SR, Gradinaru V. Spatial genomics of AAVs reveals mechanism of transcriptional crosstalk that enables targeted delivery of large genetic cargo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573214. [PMID: 38187707 PMCID: PMC10769433 DOI: 10.1101/2023.12.23.573214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Integrating cell type-specific regulatory elements (e.g. enhancers) with recombinant adeno-associated viruses (AAVs) can provide broad and efficient genetic access to specific cell types. However, the packaging capacity of AAVs restricts the size of both the enhancers and the cargo that can be delivered. Transcriptional crosstalk offers a novel paradigm for cell type-specific expression of large cargo, by separating distally-acting regulatory elements into a second AAV genome. Here, we identify and profile transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. To understand transcriptional crosstalk, we develop spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue. Using these methods, we construct detailed views of the dynamics of AAV transduction and demonstrate that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leverage transcriptional crosstalk to drive expression of a large Cas9 cargo in a cell type-specific manner with systemically-administered engineered AAVs and demonstrate AAV-delivered, minimally-invasive, cell type-specific gene editing in wildtype animals that recapitulates known disease phenotypes.
Collapse
Affiliation(s)
- Gerard M. Coughlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Máté Borsos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Nathan Appling
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Bre’Anna H. Barcelona
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Acacia M. H. Mayfield
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Elisha D. Mackey
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Rana A. Eser
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|