1
|
Sequeira-Antunes B, Ferreira HA. Nucleic Acid Aptamer-Based Biosensors: A Review. Biomedicines 2023; 11:3201. [PMID: 38137422 PMCID: PMC10741014 DOI: 10.3390/biomedicines11123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Aptamers, short strands of either DNA, RNA, or peptides, known for their exceptional specificity and high binding affinity to target molecules, are providing significant advancements in the field of health. When seamlessly integrated into biosensor platforms, aptamers give rise to aptasensors, unlocking a new dimension in point-of-care diagnostics with rapid response times and remarkable versatility. As such, this review aims to present an overview of the distinct advantages conferred by aptamers over traditional antibodies as the molecular recognition element in biosensors. Additionally, it delves into the realm of specific aptamers made for the detection of biomarkers associated with infectious diseases, cancer, cardiovascular diseases, and metabolomic and neurological disorders. The review further elucidates the varying binding assays and transducer techniques that support the development of aptasensors. Ultimately, this review discusses the current state of point-of-care diagnostics facilitated by aptasensors and underscores the immense potential of these technologies in advancing the landscape of healthcare delivery.
Collapse
Affiliation(s)
- Beatriz Sequeira-Antunes
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
- Exotictarget, 4900-378 Viana do Castelo, Portugal
- Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), 1000-029 Lisbon, Portugal
| | - Hugo Alexandre Ferreira
- Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
- Exotictarget, 4900-378 Viana do Castelo, Portugal
| |
Collapse
|
2
|
Lee Y, Kim H, Barker D, Vijayvargia R, Atwal RS, Specht H, Keshishian H, Carr SA, Lee R, Kwak S, Hyun KG, Loupe J, MacDonald ME, Song JJ, Seong IS. Huntingtin turnover: modulation of huntingtin degradation by cAMP-dependent protein kinase A (PKA) phosphorylation of C-HEAT domain Ser2550. Hum Mol Genet 2023; 32:30-45. [PMID: 35908190 DOI: 10.1093/hmg/ddac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/25/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an inherited unstable HTT CAG repeat that expands further, thereby eliciting a disease process that may be initiated by polyglutamine-expanded huntingtin or a short polyglutamine-product. Phosphorylation of selected candidate residues is reported to mediate polyglutamine-fragment degradation and toxicity. Here to support the discovery of phosphosites involved in the life-cycle of (full-length) huntingtin, we employed mass spectrometry-based phosphoproteomics to systematically identify sites in purified huntingtin and in the endogenous protein by proteomic and phosphoproteomic analyses of members of an HD neuronal progenitor cell panel. Our results bring total huntingtin phosphosites to 95, with more located in the N-HEAT domain relative to numbers in the Bridge and C-HEAT domains. Moreover, phosphorylation of C-HEAT Ser2550 by cAMP-dependent protein kinase (PKA), the top hit in kinase activity screens, was found to hasten huntingtin degradation, such that levels of the catalytic subunit (PRKACA) were inversely related to huntingtin levels. Taken together, these findings highlight categories of phosphosites that merit further study and provide a phosphosite kinase pair (pSer2550-PKA) with which to investigate the biological processes that regulate huntingtin degradation and thereby influence the steady state levels of huntingtin in HD cells.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Hyeongju Kim
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Douglas Barker
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ravi Vijayvargia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ranjit Singh Atwal
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Harrison Specht
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Hasmik Keshishian
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Kyung-Gi Hyun
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Jacob Loupe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ji-Joon Song
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Riccardi C, D’Aria F, Fasano D, Digilio FA, Carillo MR, Amato J, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Truncated Analogues of a G-Quadruplex-Forming Aptamer Targeting Mutant Huntingtin: Shorter Is Better! Int J Mol Sci 2022; 23:ijms232012412. [PMID: 36293267 PMCID: PMC9604342 DOI: 10.3390/ijms232012412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Drosophila Huntington’s disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Dominga Fasano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Naples, Italy
| | - Maria Rosaria Carillo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| |
Collapse
|
4
|
Afzal M, Sayyed N, Alharbi KS, Alzarea SI, Alshammari MS, Alomar FA, Alenezi SK, Quazi AM, Alzarea AI, Kazmi I. Anti-Huntington's Effect of Rosiridin via Oxidative Stress/AchE Inhibition and Modulation of Succinate Dehydrogenase, Nitrite, and BDNF Levels against 3-Nitropropionic Acid in Rodents. Biomolecules 2022; 12:1023. [PMID: 35892333 PMCID: PMC9329716 DOI: 10.3390/biom12081023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Rosiridin is a compound extracted from Rhodiola sachalinensis; water extracts of Rhodiola root elicit positive effects on the human central nervous system and improve brain function. They are also thought to be beneficial to one's health, in addition to being antioxidants. The present study aims to evaluate the anti-Huntington's effect of rosiridin against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like effects in rats. Materials and Methods: The acute toxicity in rats was elucidated to track the conceivable toxicities in the rats. The effectiveness of rosiridin at a dosage of 10 mg/kg was evaluated against several dose administrations of 3-NPA-induced HD-like symptoms in the rats for 22 days. At the end of the study, behavioral parameters were assessed as a hallmark for the cognitive and motor functions in the rats. Similarly, after the behavioral assessment, the animals were sacrificed to obtain a brain tissue homogenate. The prepared homogenate was utilized for the estimation of several biochemical parameters, including oxidative stress (glutathione, catalase, and malondialdehyde), brain-derived neurotrophic factor and succinate dehydrogenase activity, and the glutamate and acetylcholinesterase levels in the brain. Furthermore, inflammatory mediators linked to the occurrence of neuroinflammation in rats were evaluated in the perfused brain tissues. Results: The rosiridin-treated group exhibited a significant restoration of behavioral parameters, including in the beam-walk test, latency in falling during the hanging wire test, and percentage of memory retention during the elevated plus-maze test. Further, rosiridin modulated several biochemical parameters, including oxidative stress, pro-inflammatory activity, brain-derived neurotrophic factor, nitrite, and acetylcholinesterase as compared to disease control group that was treated with 3-NPA. Conclusions: The current study exhibits the anti-Huntington's effects of rosiridin in experimental animal models.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur 247121, India;
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Mohammed Salem Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Anwarulabedin Mohsin Quazi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (K.S.A.); (S.I.A.); (A.M.Q.)
| | - Abdulaziz I. Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Riccardi C, D’Aria F, Digilio FA, Carillo MR, Amato J, Fasano D, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:4804. [PMID: 35563194 PMCID: PMC9101412 DOI: 10.3390/ijms23094804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
| | - Maria Rosaria Carillo
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Mariarosa Anna Beatrice Melone
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| |
Collapse
|
6
|
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022; 32:235-250. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aβ), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Niloufar Mollasalehi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.,Center for Innovation in Brain Science, Tucson, Arizona, USA
| | - Liberty Francois-Moutal
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - David Porciani
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA.,MU Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | - May Khanna
- Center for Innovation in Brain Science, Tucson, Arizona, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Ozturk M, Nilsen-Hamilton M, Ilgu M. Aptamer Applications in Neuroscience. Pharmaceuticals (Basel) 2021; 14:1260. [PMID: 34959661 PMCID: PMC8709198 DOI: 10.3390/ph14121260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, prion disease, or brain tumors. The diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theragnostic applications to meet these needs. This review covers pioneering studies in applying aptamers, which shows promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.
Collapse
Affiliation(s)
- Meric Ozturk
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Marit Nilsen-Hamilton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| | - Muslum Ilgu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
8
|
Jung T, Shin B, Tamo G, Kim H, Vijayvargia R, Leitner A, Marcaida MJ, Astorga-Wells J, Jung R, Aebersold R, Peraro MD, Hebert H, Seong IS, Song JJ. The Polyglutamine Expansion at the N-Terminal of Huntingtin Protein Modulates the Dynamic Configuration and Phosphorylation of the C-Terminal HEAT Domain. Structure 2020; 28:1035-1050.e8. [PMID: 32668197 PMCID: PMC11059206 DOI: 10.1016/j.str.2020.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 11/15/2022]
Abstract
The polyQ expansion in huntingtin protein (HTT) is the prime cause of Huntington's disease (HD). The recent cryoelectron microscopy (cryo-EM) structure of HTT-HAP40 complex provided the structural information on its HEAT-repeat domains. Here, we present analyses of the impact of polyQ length on the structure and function of HTT via an integrative structural and biochemical approach. The cryo-EM analysis of normal (Q23) and disease (Q78) type HTTs shows that the structures of apo HTTs significantly differ from the structure of HTT in a HAP40 complex and that the polyQ expansion induces global structural changes in the relative movements among the HTT domains. In addition, we show that the polyQ expansion alters the phosphorylation pattern across HTT and that Ser2116 phosphorylation in turn affects the global structure and function of HTT. These results provide a molecular basis for the effect of the polyQ segment on HTT structure and activity, which may be important for HTT pathology.
Collapse
Affiliation(s)
- Taeyang Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Baehyun Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Giorgio Tamo
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hyeongju Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea
| | - Ravi Vijayvargia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan Astorga-Wells
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, 171 65 Solna, Sweden; HDxperts AB, 183 48 Täby, Sweden
| | - Roy Jung
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland; Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52 Huddinge, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.
| | - Ihn Sik Seong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KI for the BioCentury, Daejeon 34141, Korea.
| |
Collapse
|
9
|
Jamwal S, Elsworth JD, Rahi V, Kumar P. Gene therapy and immunotherapy as promising strategies to combat Huntington's disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Rev Neurother 2020; 20:1123-1141. [PMID: 32720531 DOI: 10.1080/14737175.2020.1801424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Modulation of gene expression using gene therapy as well as modulation of immune activation using immunotherapy has attracted considerable attention as rapidly emerging potential therapeutic intervention for the treatment of HD. Several preclinical and clinical trials for gene-based therapy and immunotherapy/antibody-based have been conducted. AREAS COVERED This review focused on the potential use of gene therapy and immuno-based therapies to treat HD, including the current status, the rationale for these approaches as well as preclinical and clinical data supporting it. Growing knowledge of HD pathogenesis has resulted in the discovery of new therapeutic targets, some of which are now in clinical trials. Focus has been allocated to RNA and DNA-based gene therapies for the reduction of mutant huntingtin (mHTT), using Immuno/antibody-based therapies. EXPERT OPINION While safety and efficacy of gene therapy and immunotherapy has been well demonstrated for HD, therefore much focus has now been shifted to disease-modifying therapies. This review defines the current status and future directions of gene therapy and immunotherapies. The review summarizes by what means HD genetic root cause modification and functional restoration of mHtt protein could be achieved by using targeted multimodality gene therapy and immunotherapy to target intracellular and extracellular mHtt.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT, USA
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University , Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, India
| |
Collapse
|
10
|
McGarry A, McDermott MP, Kieburtz K, Peng J, Cudkowicz M. Baseline Variables Associated with Functional Decline in 2CARE, A Randomized Clinical Trial in Huntington's Disease. J Huntingtons Dis 2020; 9:47-58. [PMID: 31985471 DOI: 10.3233/jhd-190391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite the clearly recognized progressive functional decline of Huntington's disease (HD), detailed investigations of factors associated with the rate of functional progression are limited. OBJECTIVE Understanding factors associated with functional decline through examination of existing HD clinical databases may improve efforts to mitigate it. METHODS We analyzed data from 2CARE, a randomized clinical trial with up to 5 years of follow-up, to assess potential risk factors for more rapid functional decline in HD. RESULTS Variables associated with faster functional decline included worse motor performance, worse cognitive test scores, female sex, lower weight and body mass index, and a higher CAG repeat length, especially in younger people. CONCLUSION While our data are limited to the structured environment and homogeneity of a clinical trial, attention to several of the identified risk factors may be useful towards managing functional decline over time. The observation that women progress faster than men, while potentially confounded by an association between sex and weight, deserves further study.
Collapse
Affiliation(s)
- Andrew McGarry
- Cooper University Healthcare at Rowan University, Camden, NJ, USA
| | | | | | - Jing Peng
- The Ohio State University, Columbus, OH, USA
| | | | | |
Collapse
|
11
|
Wahyuningtyas D, Chen WH, Huang CH, He YJ, Huang JJT. Biocompatible Inhibitor Based on Chitosan and Amphiphilic Peptide against Mutant Huntingtin Toxicity. Chembiochem 2019; 20:2133-2140. [PMID: 31166067 DOI: 10.1002/cbic.201900242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is classified as a protein-misfolding disease correlated with the mutant Huntingtin (mHtt) protein with abnormally expanded polyglutamine (polyQ) domains. Because no effective drugs have yet been reported, attempts to develop better therapy to delay the age of onset are in urgent demand. In this study, an amphiphilic peptide consisting of negatively charged hexaglutamic acid and a stretch of decaglutamine (E6 Q10 ) was chemically synthesized as an inhibitor against polyQ and mHtt toxicity. It is found that E6 Q10 selfassembles into spherical vesicles, as shown by means of TEM, cryoelectron microscopy, and dynamic light scattering. Assembled E6 Q10 prevented the polyQ-rich peptide (KKWQ20 AKK) from forming amyloid fibrils. To enable the cell-penetration ability of E6 Q10 , the E6 Q10 ⋅chitosan complex was generated. It is demonstrated that the complex penetrates cells, interferes with the mHtt oligomerization and aggregation process, and prevents mHtt cytotoxicity. By combining positively charged chitosan and amphiphilic peptides with a negatively charge moiety, a new strategy is provided to develop biocompatible and biodegradable inhibitors against mHtt toxicity.
Collapse
Affiliation(s)
- Devi Wahyuningtyas
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.,Sustainable Chemical Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Science Building 2, 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan
| | - Wen-Hao Chen
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Zhongda Road, Zhongli, Taoyuan, 32001, Taiwan
| | - Yu-Jung He
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| |
Collapse
|
12
|
Riccardi C, Musumeci D, Russo Krauss I, Piccolo M, Irace C, Paduano L, Montesarchio D. Exploring the conformational behaviour and aggregation properties of lipid-conjugated AS1411 aptamers. Int J Biol Macromol 2018; 118:1384-1399. [PMID: 30170359 DOI: 10.1016/j.ijbiomac.2018.06.137] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
AS1411 is a nucleolin-binding aptamer which attracted great interest as active targeting ligand for the selective delivery of therapeutic agents to tumour cells. In this work we selected three AS1411 derivatives 5'-conjugated with lipophilic tails and studied their properties in view of their application in liposomial formulations and/or lipid coated-nanoparticles for targeted therapies. The conformational behaviour of these AS1411 analogs has been investigated in comparison with the unmodified aptamer by CD, UV, PAGE, SEC-HPLC, DLS and thioflavin T (ThT) fluorescence assays to get insight in their secondary structure and aggregation properties. This study has been performed in pseudo-physiological buffers mimicking the extra- and intracellular environments, and at different concentrations in the μM range, paying special attention to the effects of the lipophilic tail on the overall aptamer conformation. The 5'-lipidated AS1411 derivatives proved to fold into stable, parallel unimolecular G-quadruplex structures, forming large aggregates, mainly micelles, at conc. >10 μM. Preliminary bioscreenings on selected cancer cells showed that these derivatives are less cytotoxic than AS1411, but maintain a similar biological behaviour. This study demonstrated that lipophilic tails dramatically favour the formation of AS1411 aggregates, however not impairing the formation and thermal stability of its peculiar G4 motifs.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Fi), Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Napoli, Italy; Institute for Endocrinology and Oncology "Gaetano Salvatore", CNR, Via Pansini 5, 80131 Napoli, Italy.
| |
Collapse
|