1
|
Lou Y, Wang Y, Lu J, Chen X. MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects. Nanomedicine (Lond) 2025:1-14. [PMID: 40231694 DOI: 10.1080/17435889.2025.2492542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Recently, the regulatory effects of microRNAs (miRNAs) on gene expression have been exploited for applications in the diagnosis and treatment of cancer, neurological diseases, and cardiovascular diseases. However, the susceptibility of miRNAs to degradation during somatic circulation and the challenges associated with their delivery to target tissues and cells have limited the clinical application of miRNAs. For application in tumor therapy, it is essential for miRNAs to specifically target cancer cells. Therefore, various novel miRNA delivery systems that protect miRNA against the activity of serum nuclease and deliver miRNA to target cells have been developed and optimized. This review introduces the passive and active targeting strategies of nanoparticles, summarizes the recent progress of miRNA nanocarriers with tumor-targeting ability, and discusses various nanoparticle delivery systems and their antitumor applications. Additionally, this review focuses on the translational challenges and potential strategies for advancing miRNA-based therapies into the clinic.
Collapse
Affiliation(s)
- Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yutian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Wang L, Zhou S, Ruan Y, Wu X, Zhang X, Li Y, Ying D, Lu Y, Tian Y, Cheng G, Zhang J, Lv K, Zhou X. Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p. Mol Biotechnol 2025; 67:762-777. [PMID: 38526683 DOI: 10.1007/s12033-024-01091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.
Collapse
Affiliation(s)
- Luoluo Wang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Shuping Zhou
- Ningbo College of Health Sciences, No.51, Xuefu Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| | - Yi Ruan
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xiang Wu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
- Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Xueming Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yi Li
- College of Computer Science and Artificial Intelligence Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Dongjian Ying
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yeting Lu
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Yuan Tian
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Gong Cheng
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Jing Zhang
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Kaiji Lv
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China
| | - Xinhua Zhou
- Department of Abdominal Minimally Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, No.1111, Jiangnan Road, Yinzhou District, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
3
|
Dilmac S, Hamurcu Z, Ozpolat B. Therapeutic Landscape of FOXM1 in Triple-Negative Breast Cancer and Aggressive Solid Cancers. Cancers (Basel) 2024; 16:3823. [PMID: 39594778 PMCID: PMC11593102 DOI: 10.3390/cancers16223823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer, lacking common treatment targets such as estrogen (ER), progesterone (PR), and HER2 receptors. This subtype is associated with significant heterogeneity, chemoresistance, early recurrence, metastasis, and poor patient survival. FOXM1 is a cancer-promoting transcription factor that plays a critical role in TNBC and other highly aggressive cancers by driving cell proliferation, invasion, metastasis, and drug resistance. In TNBC, mutations in the TP53 gene-detected in approximately 80% of patients-lead to the overexpression of FOXM1, making it a promising therapeutic target. Beyond TNBC, FOXM1 is implicated in other solid cancers, such as brain (glioblastoma), lung, and pancreatic cancers, and is considered an Achilles' heel of aggressive cancers. Despite its potential as a therapeutic target, there are currently no FDA-approved FOXM1 inhibitors, and none have advanced to clinical trials. This review explores the role of FOXM1 in cancer progression and highlights the current status of efforts to develop effective FOXM1 inhibitors.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38030, Turkey;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| |
Collapse
|
4
|
Battogtokh G, Obidiro O, Akala EO. Recent Developments in Combination Immunotherapy with Other Therapies and Nanoparticle-Based Therapy for Triple-Negative Breast Cancer (TNBC). Cancers (Basel) 2024; 16:2012. [PMID: 38893132 PMCID: PMC11171312 DOI: 10.3390/cancers16112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC), lacking specific receptors found in other breast cancer subtypes, poses significant treatment challenges due to limited therapeutic options. Therefore, it is necessary to develop novel treatment approaches for TNBC. In the last few decades, many attempts have been reported for alternative tools for TNBC treatment: immunotherapy, radiotherapy, targeted therapy, combination therapy, and nanotechnology-based therapy. Among them, combination therapy and nanotechnology-based therapy show the most promise for TNBC treatment. This review outlines recent advancements in these areas, highlighting the efficacy of combination therapy (immunotherapy paired with chemotherapy, targeted therapy, or radiotherapy) in both preclinical and clinical stages and nanotechnology-based therapies utilizing various nanoparticles loaded with anticancer agents, nucleic acids, immunotherapeutics, or CRISPRs in preclinical stages for TNBC treatment.
Collapse
Affiliation(s)
| | | | - Emmanuel O. Akala
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA; (G.B.); (O.O.)
| |
Collapse
|
5
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Kzar Al-Shukri HH, Abdul-Jabbar Ali S, Al-Akkam KA, Hjazi A, Rasulova I, Mustafa YF, Al-Saidi DN, Alasheqi MQ, Alawadi A, Alsaalamy A. The role of exo-miRNA in diagnosis and treatment of cancers, focusing on effective miRNAs in colorectal cancer. Cell Biol Int 2024; 48:280-289. [PMID: 38225535 DOI: 10.1002/cbin.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Small extracellular (EV) particles known as exosomes are released by a variety of cell types, including immune system cells, stem cells, and tumor cells. They are regarded as a subgroup of EVs and have a diameter that ranges from 30 to 150 nm. Proteins, lipids, nucleic acids (including RNA and DNA), and different bioactive compounds are among the wide range of biomolecules that make up the cargo of exosomes. Exosomes are crucial for intercellular communication because they let cells share information and signaling chemicals. They are involved in various physiological and pathological processes, including immune responses, tissue regeneration, cancer progression, and neurodegenerative diseases. In conclusion, it is essential to continue research into exosome-based cancer medicines to advance understanding, improve treatment plans, create personalized tactics, ensure safety, and speed up clinical translation.
Collapse
Affiliation(s)
- Hamzah H Kzar Al-Shukri
- Department of Biochemistry, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Kirkuk, Iraq
| |
Collapse
|
7
|
Ali M, Mishra D, Singh RP. Cancer Pathways Targeted by Berberine: Role of microRNAs. Curr Med Chem 2024; 31:5178-5198. [PMID: 38303534 DOI: 10.2174/0109298673275121231228124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.
Collapse
Affiliation(s)
- Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepali Mishra
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana Pratap Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
8
|
Abd ELhafeez AS, Ghanem HM, Swellam M, Taha AM. Involvement of FAM170B-AS1, hsa-miR-1202, and hsa-miR-146a-5p in breast cancer. Cancer Biomark 2024; 39:313-333. [PMID: 38250762 PMCID: PMC11091646 DOI: 10.3233/cbm-230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND FAM170B-AS1 is usually expressed low in all organs except for testicular tissues. No study was performed to explore its role in breast cancer (BC). Contradictory results were reported about hsa-miR-1202 and hsa-miR-146a-5p in BC. OBJECTIVE The present study aimed to explore the involvement of FAM170B-AS1 in BC using bioinformatics predictive tools, followed by a practical validation besides exploring the impact of hsa-miR-1202 and hsa-miR-146a-5p in BC. METHODS This study enrolled 96 female patients with BC, 30 patients with benign breast diseases (BBD), and 25 control subjects. The expressions of circulating FAM170B-AS1, hsa-miR-1202, and hsa-miR-146a-5p were quantified using qRT-PCR. These ncRNAs' associations, predictive, and diagnostic roles in BC were statistically tested. The underlying miRNA/mRNA targets of FAM170B-AS1 in BC were bioinformatically predicted followed by confirmation based on the GEPIA and TCGA databases. RESULTS The expression of FAM170B-AS1 was upregulated in sera of BC patients and hsa-miR-1202 was upregulated in sera of BBD and BC patients while that of hsa-miR-146a-5p was downregulated in BC. These FAM170B-AS1 was significantly associated with BC when compared to BBD. FAM170B-AS1 and hsa-miR-1202 were statistically associated with the BC's stage, grade, and LN metastasis. FAM170B-AS1 and hsa-miR-146a-5p gave the highest specificity and sensitivity for BC. KRAS and EGFR were predicted to be targeted by FAM170B-AS1 through interaction with hsa-miR-143-3p and hsa-miR-7-5p, respectively. Based on the TCGA database, cancer patients having mutations in FAM170B show good overall survival. CONCLUSIONS The present study reported that for the first time, FAM170B-AS1 may be a potential risk factor, predictive, and diagnostic marker for BC. In addition, FAM170B-AS1 might be involved in BC by interacting with hsa-miR-143-3p/KRAS and hsa-miR-7-5p/EGFR through enhancement or repression that may present a new therapeutic option for BC.
Collapse
Affiliation(s)
| | - Hala Mostafa Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
9
|
Pal A, Ojha A, Ju J. Functional and Potential Therapeutic Implication of MicroRNAs in Pancreatic Cancer. Int J Mol Sci 2023; 24:17523. [PMID: 38139352 PMCID: PMC10744132 DOI: 10.3390/ijms242417523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The alarmingly low five-year survival rate for pancreatic cancer presents a global health challenge, contributing to about 7% of all cancer-related deaths. Late-stage diagnosis and high heterogeneity are the biggest hurdles in treating pancreatic cancer. Thus, there is a pressing need to discover novel biomarkers that could help in early detection as well as improve therapeutic strategies. MicroRNAs (miRNAs), a class of short non-coding RNA, have emerged as promising candidates with regard to both diagnostics and therapeutics. Dysregulated miRNAs play pivotal roles in accelerating tumor growth and metastasis, orchestrating tumor microenvironment, and conferring chemoresistance in pancreatic cancer. The differential expression profiles of miRNAs in pancreatic cancer could be utilized to explore novel therapeutic strategies. In this review, we also covered studies on recent advancements in various miRNA-based therapeutics such as restoring miRNAs with a tumor-suppressive function, suppressing miRNA with an oncogenic function, and combination with chemotherapeutic drugs. Despite several challenges in terms of specificity and targeted delivery, miRNA-based therapies hold the potential to revolutionize the treatment of pancreatic cancer by simultaneously targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.P.); (A.O.)
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
10
|
Flores-Contreras EA, González-González RB, González-González E, Parra-Saldívar R, Iqbal HM. Nano-vehicles modulated delivery of therapeutic epigenetic regulators to treat Triple-Negative Breast Cancer. J Drug Deliv Sci Technol 2022; 77:103924. [DOI: 10.1016/j.jddst.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Selumetinib: a selective MEK1 inhibitor for solid tumor treatment. Clin Exp Med 2022; 23:229-244. [PMID: 35171389 DOI: 10.1007/s10238-021-00783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer incidence is rapidly growing. Solid tumors are responsible for a majority of cancers. Recently, molecular-targeted agents have played a significant role in cancer treatment. Ras-Raf-MEK-ERK signaling pathway, is a substantial element in the survival, propagation, and drug resistance of human cancers. MEK is a specific part of the so-called cascade, and ERK proteins are its sole target. Furthermore, their downstream position in the Ras-ERK cascade, is noteworthy to direct their function in patients with upstream mutated genes. MEK1 mutations are responsible for initiating several solid tumors. Selumetinib (AZD6244) is a second-generation, selective, potent, and non-ATP competitive allosteric MEK1 inhibitor. The efficacy of selumetinib in various solid tumors such as colorectal cancer, lung cancer, neurofibroma, and melanoma is investigated. The present paper provides an overview of the MAPK cascade, the role of selumetinib as a MEK1/2 inhibitor, and the related findings of clinical trials for solid tumor treatment.
Collapse
|
13
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Jalili Khoshnoud R. Emerging role of non-coding RNAs in the regulation of KRAS. Cancer Cell Int 2022; 22:68. [PMID: 35139853 PMCID: PMC8827276 DOI: 10.1186/s12935-022-02486-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 01/17/2023] Open
Abstract
The Kirsten ras oncogene KRAS is a member of the small GTPase superfamily participating in the RAS/MAPK pathway. A single amino acid substitution in KRAS gene has been shown to activate the encoded protein resulting in cell transformation. This oncogene is involved in the malignant transformation in several tissues. Notably, numerous non-coding RNAs have been found to interact with KRAS protein. Such interaction results in a wide array of human disorders, particularly cancers. Orilnc1, KIMAT1, SLCO4A1-AS1, LINC01420, KRAS1P, YWHAE, PART1, MALAT1, PCAT-1, lncRNA-NUTF2P3-001 and TP53TG1 are long non-coding RNAs (lncRNAs) whose interactions with KRAS have been verified in the context of cancer. miR-143, miR-96, miR-134 and miR-126 have also been shown to interact with KRAS in different tissues. Finally, circITGA7, circ_GLG1, circFNTA and circ-MEMO1 are examples of circular RNAs (circRNAs) that interact with KRAS. In this review, we describe the interaction between KRAS and lncRNAs, miRNAs and circRNAs, particularly in the context of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Jalili Khoshnoud
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Gurbuz N, Kahraman N, Sonmez HE, Mokhlis HA, Kosar PA, Ozpolat B. miRNA-193b-5p Suppresses Pancreatic Cancer Cell Proliferation, Invasion, Epithelial Mesenchymal Transition, and Tumor Growth by Inhibiting eEF2K. Anticancer Agents Med Chem 2022; 22:2607-2618. [PMID: 35718922 DOI: 10.2174/1871520622666220117123213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/26/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer deaths in the US due to the lack of effective targeted therapeutics and extremely poor prognosis. OBJECTIVE The study aims to investigate the role of miR-193b and related signaling mechanisms in PDAC cell proliferation, invasion, and tumor growth. METHODS Using PDAC cell lines, we performed cell viability, colony formation, in vitro wound healing, and matrigel invasion assays following transfection with miR-193b mimic or control-miR. To identify potential downstream targets of miR-193b, we utilized miRNA-target prediction algorithms and investigated the regulation of eukaryotic elongation factor-2 kinase (eEF2K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways and mediators of epithelial mesenchymal transition (EMT). The role of miR-193b in PDAC tumorigenesis was evaluated in in vivo tumor growth of Panc-1 xenograft model in nude mice. RESULTS We found that miR-193b is under expressed in PDAC cells compared to corresponding normal pancreatic epithelial cells and demonstrated that ectopic expression of miR-193b reduced cell proliferation, migration, invasion, and EMT through downregulation of eEF2K signaling in PDAC cells. miR-193b expression led to increased expression of E-Cadherin and Claudin-1 while decreasing Snail and TCF8/ZEB1 expressions via eEF2K and MAPK/ERK axis. In vivo systemic injection of miR-193b using lipid-nanoparticles twice a week reduced tumor growth of Panc-1 xenografts and eEF2K expression in nude mice. CONCLUSIONS Our findings suggest that miR-193b expression suppresses PDAC cell proliferation, migration, invasion, and EMT through inhibition of eEF2K/MAPK-ERK oncogenic axis and that miR-193b-based RNA therapy might be an effective therapeutic strategy to control the growth of PDAC.
Collapse
Affiliation(s)
- Nilgun Gurbuz
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hafize Elif Sonmez
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey
| | - Hamada Ahmed Mokhlis
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Pinar Aslan Kosar
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Li J, Gao X, Zhang Z, Lai Y, Lin X, Lin B, Ma M, Liang X, Li X, Lv W, Lin Y, Zhang N. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502-5p/KRAS and IGF2BP2/Myc axes. Mol Cancer 2021; 20:138. [PMID: 34696797 PMCID: PMC8543802 DOI: 10.1186/s12943-021-01444-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Emerging studies have revealed the potent functions of circRNAs in breast cancer tumorigenesis. However, the biogenesis, biofunction and mechanism of circRNAs in triple-negative breast cancer (TNBC) are largely unknown. METHODS High-throughput RNA sequencing was applied to identify dysregulated circRNAs in TNBCs and paired normal tissues. RNA pulldown and luciferase assays were performed to investigate the interaction between circular CD44 (circCD44, also annotated as hsa_circ_0021735) and miR-502-5p. RNA pulldown and RIP assays were used to investigate the interaction between circCD44 and IGF2BP2. Cell viability, colony formation, migration/invasion assays and in vivo tumorigenesis were used to investigate circCD44 biological functions. RESULTS CircCD44 is an uncharacterized circRNA, which is highly expressed in TNBC, and its expression is negatively correlated with the prognosis of TNBC patients. CircCD44 promotes TNBC proliferation, migration, invasion and tumorigenesis at least partially by sponging miR-502-5p and interacting with IGF2BP2. CONCLUSION Our data suggested that overexpressed circCD44 promotes TNBC progression. CircCD44 is potentially a novel diagnostic and therapeutic marker for TNBC patients.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xinya Gao
- Department of Neurosurgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Zhanqiang Zhang
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliate Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Lin
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Maoguang Ma
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xiaoli Liang
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xixi Li
- Department of Neurosurgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Weiming Lv
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Ying Lin
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
16
|
Zou Y, Zhong C, Hu Z, Duan S. MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Front Oncol 2021; 11:743701. [PMID: 34676171 PMCID: PMC8523946 DOI: 10.3389/fonc.2021.743701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted genes, which have unique molecular functions such as catalytic activity, transcription regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/mTOR, Wnt/β-Catenin, NF-κβ, and MEK/ERK signaling pathways. In addition, the target genes of miR-873-5p are closely related to the proliferation, apoptosis, migration, invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This review summarizes the role and mechanism of miR-873-5p in human tumors shows the potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuhao Zou
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Chenming Zhong
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Zekai Hu
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
18
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
19
|
Liu J, Li H, Wei C, Ding J, Lu J, Pan G, Mao A. circFAT1(e2) Promotes Papillary Thyroid Cancer Proliferation, Migration, and Invasion via the miRNA-873/ZEB1 Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:1459368. [PMID: 33133224 PMCID: PMC7593750 DOI: 10.1155/2020/1459368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) play an extremely important regulatory role in the occurrence and development of various malignant tumors including papillary thyroid cancer (PTC). circFAT1(e2) is a new type of circRNA derived from exon 2 of the FAT1 gene, which is distributed in the cytoplasm and nucleus of PTC cells. However, so far, the role of circFAT1(e2) in PTC is still unclear. In this study, circFAT1(e2) was found to be highly expressed in PTC cell lines and tissues. circFAT1(e2) knockdown suppressed PTC cell growth, migration, and invasion. Also, circFAT1(e2) acted as a sponge for potential microRNAs (miRNAs) to modulate cancer progression. A potential miRNA target was discovered to be miR-873 which was targeted by circFAT1(e2) in PTC. The dual-luciferase assay conducted later also confirmed that there was indeed a direct interaction between circFAT1(e2) and miR-873. This study also confirmed that circFAT1(e2) inhibited the miR-873 expression and thus promoted the ZEB1 expression, thus affecting the proliferation, metastasis, and invasion of PTC cells. In conclusion, the results of this study indicated that circFAT1(e2) played a carcinogenic role by targeting the miR-873/ZEB1 axis to promote PTC invasion and metastasis, which might become a potential novel target for therapy of PTC.
Collapse
Affiliation(s)
- Jiazhe Liu
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| | - Hongchang Li
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| | - Chuanchao Wei
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| | - Junbin Ding
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| | - Jingfeng Lu
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| | - Gaofeng Pan
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| | - Anwei Mao
- Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China
| |
Collapse
|
20
|
Espinosa-Paredes DA, Cornejo-Garrido J, Moreno-Eutimio MA, Martínez-Rodríguez OP, Jaramillo-Flores ME, Ordaz-Pichardo C. Echinacea Angustifolia DC Extract Induces Apoptosis and Cell Cycle Arrest and Synergizes with Paclitaxel in the MDA-MB-231 and MCF-7 Human Breast Cancer Cell Lines. Nutr Cancer 2020; 73:2287-2305. [PMID: 32959676 DOI: 10.1080/01635581.2020.1817956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Echinacea spp. displays different biological activities, such as antiviral, immunomodulatory, and anticancer activities. Currently, high sales of hydroalcoholic extracts of Echinacea have been reported; hence, the importance of studies on Echinacea. AIM To establish the effects of Echinacea angustifolia DC extract obtained with ethyl acetate (Ea-AcOEt) in breast cancer cell lines. METHODS Cytotoxicity, cell cycle arrest, and cell death were evaluated. Besides, the safety of the extract, as well as its effect in combination with paclitaxel were investigated. RESULTS The echinacoside and caffeic acid content in the Ea-AcOEt extract were quantified by HPLC, and its antioxidant activity was assessed. The Ea-AcOEt extract showed cytotoxic activity on breast cancer MDA-MB-231 cells (IC50 28.18 ± 1.14 µg/ml) and MCF-7 cells (19.97 ± 2.31 µg/ml). No effect was observed in normal breast MCF-10 cells. The Ea-AcOEt extract induced cell cycle arrest in the G1 phase and caspase-mediated apoptosis. No genotoxicity was found in vitro or in vivo, and the extract showed no signs of toxicity or death at 2,000 mg/kg in rodents. In vitro, the combination of Ea-AcOEt extract and paclitaxel showed a synergistic effect on both cancer cell lines. CONCLUSION The Ea-AcOEt extract is a potential candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Daniel Abraham Espinosa-Paredes
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Fitoquímica, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| | | | - Oswaldo Pablo Martínez-Rodríguez
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Biopolímeros, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN); Av. Wilfrido Massieu Esq. Cda. Manuel Stampa S/N Col. Unidad Profesional López Mateos, Alcaldía Gustavo A. Madero, CDMX, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Alcaldía Gustavo A. Madero, CDMX, México
| |
Collapse
|
21
|
Piña-Sánchez P, Valdez-Salazar HA, Ruiz-Tachiquín ME. Circulating microRNAs and their role in the immune response in triple-negative breast cancer. Oncol Lett 2020; 20:224. [PMID: 32968446 PMCID: PMC7499949 DOI: 10.3892/ol.2020.12087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women worldwide, and despite advances in treatments, its incidence and mortality are increasing. Therefore, it is necessary to develop new, non-invasive tests that provide more accurate diagnosis and prognosis in a timely manner. A promising approach is measuring the presence of biomarkers to detect tumors at various stages and determine their specific characteristics, thus allowing for more personalized treatment. MicroRNAs (miRNAs) serve a role in gene expression, primarily by interacting with messenger RNAs, and may be potential biomarkers for detecting cancer. They are detectable in tissues and blood, including plasma and/or serum, are stable and often tumor specific. Also, different miRNAs are associated with specific BC molecular subtypes. Triple-negative BC (TNBC) is a type of BC in which the primary targets for hormonal therapy are absent. It is an aggressive phenotype, which frequently metastasizes and is associated with an unfavorable prognosis. The present review focuses on circulating miRNAs in patients with TNBC, with an emphasis on their interaction with the immune response checkpoint genes PD-1, PD-L1 and CTLA4. Modulation and response of the immune system are of interest in cancer treatment due to the success of immunotherapy in the treatment of various neoplasms. Based on the findings of this literature review and the in silico analysis performed as part of this review, it is concluded that circulating hsa-miR-195 and hsa-miR-155 in TNBC interact with checkpoint genes involved in the immune response. Further analysis of the expression of these circulating miRNAs and their association with prognosis in patients with TNBC treated with immunotherapy should be assessed to evaluate their possible use as non-invasive predictive biomarkers. In addition, functional studies to analyze biologically relevant targets in the development and prognosis of TNBC, which could be therapeutic targets, are also recommended.
Collapse
Affiliation(s)
- Patricia Piña-Sánchez
- Oncological Diseases Medical Research Unit, Oncology Hospital, XXI Century National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
| | - Hilda-Alicia Valdez-Salazar
- Infectious and Parasitic Diseases Medical Research Unit, Pediatrics Hospital 'Dr. Silvestre Frenk Freund', XXI Century National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
| | - Martha-Eugenia Ruiz-Tachiquín
- Oncological Diseases Medical Research Unit, Oncology Hospital, XXI Century National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City 06720, Mexico
| |
Collapse
|
22
|
Giráldez-Pérez RM, Grueso E, Lhamyani S, Perez-Tejeda P, Gentile AM, Kuliszewska E, Roman-Perez J, El Bekay R. miR-21/Gemini surfactant-capped gold nanoparticles as potential therapeutic complexes: Synthesis, characterization and in vivo nanotoxicity probes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth. Proc Natl Acad Sci U S A 2020; 117:16938-16948. [PMID: 32616570 DOI: 10.1073/pnas.2000312117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Furthermore, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutant RAS Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising approach to developing RAS therapeutics against a broad array of cancers.
Collapse
|
24
|
miRNAs-Based Molecular Signature for KRAS Mutated and Wild Type Colorectal Cancer: An Explorative Study. J Immunol Res 2020; 2020:4927120. [PMID: 32676506 PMCID: PMC7330647 DOI: 10.1155/2020/4927120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
microRNAs (miRNAs) have been proposed as promising molecular biomarkers for diagnosis, prognosis, and responsive therapeutic targets in different types of cancer, including colorectal cancer (CRC). In this study, we evaluated the expression levels of 84 cancer-associated miRNAs in a cohort of 39 human samples comprising 13 peritumoral and 26 tumoral tissues from surgical specimens of CRC patients. KRAS mutations were detected in 11 tumoral samples. In a first analysis, we found 5 miRNAs (miR-215-5p, miR-9-5p, miR-138-5p, miR378a-3p, and miR-150-5p) that were significantly downregulated and one upregulated (miR-135b-5p) in tumoral tissues compared with the peritumoral tissues. Furthermore, by comparing miRNA profile between KRAS mutated CRC tissues respect to wild type CRC tissues, we found 7 miRNA (miR-27b-3p, miR-191-5p, miR-let7d-5p, miR-15b-5p, miR-98-5p, miR-10a-5p, and miR-149-5p) downregulated in KRAS mutated condition. In conclusion, we have identified a panel of miRNAs that specifically distinguish CRC tissues from peritumoral tissue and a different set of miRNAs specific for CRC with KRAS mutations. These findings may contribute to the discovering of new molecular biomarkers with clinic relevance and might shed light on novel molecular aspects of CRC.
Collapse
|
25
|
Lv B, Li F, Liu X, Lin L. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway. Cancer Gene Ther 2020; 28:74-88. [PMID: 32555352 DOI: 10.1038/s41417-020-0185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, relapse, and metastasis. Thus, residual CSCs after chemotherapy may result in poor prognosis for nasopharyngeal carcinoma (NPC). Emerging evidence suggests that differentially expressed microRNAs (miRNAs) regulate genes that carry out important functions in CSCs. Here we investigate the interaction of microRNA-873 (miR-873) with the Zic family member 2 (ZIC2) and the effects on downstream serine-threonine protein kinase (AKT) signaling pathway in CSCs in the context of NPC. Initially, microarray-based gene expression profiling identified ZIC2 as a key differentially expressed gene in NPC, which was subsequently confirmed to be upregulated in clinical NPC tissue samples. NPC cells were subjected to sphere-formation conditions in low-attachment plates, followed by sorting of CD133+ cells, which were selected as NPC stem cells after further characterization of stem cell biomarkers. ZIC2 was then shown to be enriched in NPC stem cells at both mRNA and protein levels. However, loss of ZIC2 was associated with the self-renewal, proliferative and tumorigenic properties of NPC stem cells. Next, miRNAs potentially able to target ZIC2 were predicted by the intersection of mirDIP and TargetScan database results, and miRNA miR-873 was found to be downregulated in NPC tissues in general but especially in NPC stem cells. Upregulation of miR-873 inhibited the stem-like properties and tumorigenicity of NPC stem cells, which was found to take place through downregulation of ZIC2 and disruption of the AKT signaling pathway. Collectively, the results obtained suggest that overexpression of miR-873 could aid NPC tumor suppression through reduction of the malignant potential of CSCs.
Collapse
Affiliation(s)
- Baotao Lv
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Fuzhou Li
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Xiaoli Liu
- Department of Psychology, Linyi Rongjun Hospital, 276003, Linyi, P.R. China
| | - Liqiang Lin
- Department of E.N.T., Linyi People's Hospital, 276000, Linyi, P.R. China.
| |
Collapse
|
26
|
Malavika D, Shreya S, Raj Priya V, Rohini M, He Z, Partridge NC, Selvamurugan N. miR‐873‐3p targets HDAC4 to stimulate matrix metalloproteinase‐13 expression upon parathyroid hormone exposure in rat osteoblasts. J Cell Physiol 2020; 235:7996-8009. [DOI: 10.1002/jcp.29454] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Desai Malavika
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Srinivasan Shreya
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Vembar Raj Priya
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| | - Zhiming He
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry New York University New York New York
| | - Nicola C. Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry New York University New York New York
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering SRM Institute of Science and Technology Kattankulathur Tamil Nadu India
| |
Collapse
|