1
|
Wang M, Ali H, Xu Y, Xie J, Xu S. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities. J Biol Chem 2024; 300:107140. [PMID: 38447795 PMCID: PMC10997841 DOI: 10.1016/j.jbc.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
RNA modification, a posttranscriptional regulatory mechanism, significantly influences RNA biogenesis and function. The accurate identification of modification sites is paramount for investigating their biological implications. Methods for encoding RNA sequence into numerical data play a crucial role in developing robust models for predicting modification sites. However, existing techniques suffer from limitations, including inadequate information representation, challenges in effectively integrating positional and sequential information, and the generation of irrelevant or redundant features when combining multiple approaches. These deficiencies hinder the effectiveness of machine learning models in addressing the performance challenges associated with predicting RNA modification sites. Here, we introduce a novel RNA sequence feature representation method, named BiPSTP, which utilizes bidirectional trinucleotide position-specific propensities. We employ the parameter ξ to denote the interval between the current nucleotide and its adjacent forward or backward dinucleotide, enabling the extraction of positional and sequential information from RNA sequences. Leveraging the BiPSTP method, we have developed the prediction model mRNAPred using support vector machine classifier to identify multiple types of RNA modification sites. We evaluate the performance of our BiPSTP method and mRNAPred model across 12 distinct RNA modification types. Our experimental results demonstrate the superiority of the mRNAPred model compared to state-of-art models in the domain of RNA modification sites identification. Importantly, our BiPSTP method enhances the robustness and generalization performance of prediction models. Notably, it can be applied to feature extraction from DNA sequences to predict other biological modification sites.
Collapse
Affiliation(s)
- Mingzhao Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Haider Ali
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yandi Xu
- School of Computer Science, Shaanxi Normal University, Xi'an, China; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, China.
| | - Shengquan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
2
|
Ao C, Jiao S, Wang Y, Yu L, Zou Q. Biological Sequence Classification: A Review on Data and General Methods. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0011. [PMID: 39285948 PMCID: PMC11404319 DOI: 10.34133/research.0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 09/19/2024]
Abstract
With the rapid development of biotechnology, the number of biological sequences has grown exponentially. The continuous expansion of biological sequence data promotes the application of machine learning in biological sequences to construct predictive models for mining biological sequence information. There are many branches of biological sequence classification research. In this review, we mainly focus on the function and modification classification of biological sequences based on machine learning. Sequence-based prediction and analysis are the basic tasks to understand the biological functions of DNA, RNA, proteins, and peptides. However, there are hundreds of classification models developed for biological sequences, and the quite varied specific methods seem dizzying at first glance. Here, we aim to establish a long-term support website (http://lab.malab.cn/~acy/BioseqData/home.html), which provides readers with detailed information on the classification method and download links to relevant datasets. We briefly introduce the steps to build an effective model framework for biological sequence data. In addition, a brief introduction to single-cell sequencing data analysis methods and applications in biology is also included. Finally, we discuss the current challenges and future perspectives of biological sequence classification research.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Kiss DJ, Oláh J, Tóth G, Varga M, Stirling A, Menyhárd DK, Ferenczy GG. The Structure-Derived Mechanism of Box H/ACA Pseudouridine Synthase Offers a Plausible Paradigm for Programmable RNA Editing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dóra Judit Kiss
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Gergely Tóth
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. stny. 1/c, H-1117 Budapest, Hungary
| | - András Stirling
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Dóra K. Menyhárd
- MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
4
|
Li J, He S, Guo F, Zou Q. HSM6AP: a high-precision predictor for the Homo sapiens N6-methyladenosine (m^6 A) based on multiple weights and feature stitching. RNA Biol 2021; 18:1882-1892. [PMID: 33446014 PMCID: PMC8583144 DOI: 10.1080/15476286.2021.1875180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/02/2020] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
Recent studies have shown that RNA methylation modification can affect RNA transcription, metabolism, splicing and stability. In addition, RNA methylation modification has been associated with cancer, obesity and other diseases. Based on information about human genome and machine learning, this paper discusses the effect of the fusion sequence and gene-level feature extraction on the accuracy of methylation site recognition. The significant limitation of existing computing tools was exposed by discovered of new features. (1) Most prediction models are based solely on sequence features and use SVM or random forest as classification methods. (2) Limited by the number of samples, the model may not achieve good performance. In order to establish a better prediction model for methylation sites, we must set specific weighting strategies for training samples and find more powerful and informative feature matrices to establish a comprehensive model. In this paper, we present HSM6AP, a high-precision predictor for the Homo sapiens N6-methyladenosine (m 6 A ) based on multiple weights and feature stitching. Compared with existing methods, HSM6AP samples were creatively weighted during training, and a wide range of features were explored. Max-Relevance-Max-Distance (MRMD) is employed for feature selection, and the feature matrix is generated by fusing a single feature. The extreme gradient boosting (XGBoost), an integrated machine learning algorithm based on decision tree, is used for model training and improves model performance through parameter adjustment. Two rigorous independent data sets demonstrated the superiority of HSM6AP in identifying methylation sites. HSM6AP is an advanced predictor that can be directly employed by users (especially non-professional users) to predict methylation sites. Users can access our related tools and data sets at the following website: http://lab.malab.cn/~lijing/HSM6AP.html The codes of our tool can be publicly accessible at https://github.com/lijingtju/HSm6AP.git.
Collapse
Affiliation(s)
- Jing Li
- Institute of computational biology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Shida He
- Institute of computational biology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- Institute of computational biology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Bioinformatics Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Zulfiqar H, Khan RS, Hassan F, Hippe K, Hunt C, Ding H, Song XM, Cao R. Computational identification of N4-methylcytosine sites in the mouse genome with machine-learning method. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3348-3363. [PMID: 34198389 DOI: 10.3934/mbe.2021167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
N4-methylcytosine (4mC) is a kind of DNA modification which could regulate multiple biological processes. Correctly identifying 4mC sites in genomic sequences can provide precise knowledge about their genetic roles. This study aimed to develop an ensemble model to predict 4mC sites in the mouse genome. In the proposed model, DNA sequences were encoded by k-mer, enhanced nucleic acid composition and composition of k-spaced nucleic acid pairs. Subsequently, these features were optimized by using minimum redundancy maximum relevance (mRMR) with incremental feature selection (IFS) and five-fold cross-validation. The obtained optimal features were inputted into random forest classifier for discriminating 4mC from non-4mC sites in mouse. On the independent dataset, our model could yield the overall accuracy of 85.41%, which was approximately 3.8% -6.3% higher than the two existing models, i4mC-Mouse and 4mCpred-EL respectively. The data and source code of the model can be freely download from https://github.com/linDing-groups/model_4mc.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Rida Sarwar Khan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Farwa Hassan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University, Tacoma 98447, USA
| | - Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University, Tacoma 98447, USA
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao-Ming Song
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma 98447, USA
| |
Collapse
|
7
|
Yang X, Ye X, Li X, Wei L. iDNA-MT: Identification DNA Modification Sites in Multiple Species by Using Multi-Task Learning Based a Neural Network Tool. Front Genet 2021; 12:663572. [PMID: 33868390 PMCID: PMC8044371 DOI: 10.3389/fgene.2021.663572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Motivation DNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two important DNA modifications and play crucial roles in a variety of biological processes. Accurate identification of the modifications is essential to better understand their biological functions and mechanisms. However, existing methods to identify 4mA or 6mC sites are all single tasks, which demonstrates that they can identify only a certain modification in one species. Therefore, it is desirable to develop a novel computational method to identify the modification sites in multiple species simultaneously. Results In this study, we proposed a computational method, called iDNA-MT, to identify 4mC sites and 6mA sites in multiple species, respectively. The proposed iDNA-MT mainly employed multi-task learning coupled with the bidirectional gated recurrent units (BGRU) to capture the sharing information among different species directly from DNA primary sequences. Experimental comparative results on two benchmark datasets, containing different species respectively, show that either for identifying 4mA or for 6mC site in multiple species, the proposed iDNA-MT outperforms other state-of-the-art single-task methods. The promising results have demonstrated that iDNA-MT has great potential to be a powerful and practically useful tool to accurately identify DNA modifications.
Collapse
Affiliation(s)
- Xiao Yang
- School of Software, Shandong University, Jinan, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Xuehong Li
- Department of Rehabilitation, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Huang Q, Zhou W, Guo F, Xu L, Zhang L. 6mA-Pred: identifying DNA N6-methyladenine sites based on deep learning. PeerJ 2021; 9:e10813. [PMID: 33604189 PMCID: PMC7866889 DOI: 10.7717/peerj.10813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
With the accumulation of data on 6mA modification sites, an increasing number of scholars have begun to focus on the identification of 6mA sites. Despite the recognized importance of 6mA sites, methods for their identification remain lacking, with most existing methods being aimed at their identification in individual species. In the present study, we aimed to develop an identification method suitable for multiple species. Based on previous research, we propose a method for 6mA site recognition. Our experiments prove that the proposed 6mA-Pred method is effective for identifying 6mA sites in genes from taxa such as rice, Mus musculus, and human. A series of experimental results show that 6mA-Pred is an excellent method. We provide the source code used in the study, which can be obtained from http://39.100.246.211:5004/6mA_Pred/.
Collapse
Affiliation(s)
- Qianfei Huang
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
9
|
He S, Guo F, Zou Q, HuiDing. MRMD2.0: A Python Tool for Machine Learning with Feature Ranking and Reduction. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200503030350] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
The study aims to find a way to reduce the dimensionality of the dataset.
Background:
Dimensionality reduction is the key issue of the machine learning process. It does
not only improve the prediction performance but also could recommend the intrinsic features and
help to explore the biological expression of the machine learning “black box”.
Objective:
A variety of feature selection algorithms are used to select data features to achieve
dimensionality reduction.
Methods:
First, MRMD2.0 integrated 7 different popular feature ranking algorithms with
PageRank strategy. Second, optimized dimensionality was detected with forward adding strategy.
Result:
We have achieved good results in our experiments.
Conclusion:
Several works have been tested with MRMD2.0. It showed well performance.
Otherwise, it also can draw the performance curves according to the feature dimensionality. If
users want to sacrifice accuracy for fewer features, they can select the dimensionality from the
performance curves.
Other:
We developed friendly python tools together with the web server. The users could upload
their csv, arff or libsvm format files. Then the webserver would help to rank features and find the
optimized dimensionality.
Collapse
Affiliation(s)
- Shida He
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - HuiDing
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Chen K, Song B, Tang Y, Wei Z, Xu Q, Su J, de Magalhães JP, Rigden DJ, Meng J. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res 2021; 49:D1396-D1404. [PMID: 33010174 PMCID: PMC7778951 DOI: 10.1093/nar/gkaa790] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Deciphering the biological impacts of millions of single nucleotide variants remains a major challenge. Recent studies suggest that RNA modifications play versatile roles in essential biological mechanisms, and are closely related to the progression of various diseases including multiple cancers. To comprehensively unveil the association between disease-associated variants and their epitranscriptome disturbance, we built RMDisease, a database of genetic variants that can affect RNA modifications. By integrating the prediction results of 18 different RNA modification prediction tools and also 303,426 experimentally-validated RNA modification sites, RMDisease identified a total of 202,307 human SNPs that may affect (add or remove) sites of eight types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G and Nm). These include 4,289 disease-associated variants that may imply disease pathogenesis functioning at the epitranscriptome layer. These SNPs were further annotated with essential information such as post-transcriptional regulations (sites for miRNA binding, interaction with RNA-binding proteins and alternative splicing) revealing putative regulatory circuits. A convenient graphical user interface was constructed to support the query, exploration and download of the relevant information. RMDisease should make a useful resource for studying the epitranscriptome impact of genetic variants via multiple RNA modifications with emphasis on their potential disease relevance. RMDisease is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/rmd.
Collapse
Affiliation(s)
- Kunqi Chen
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Ageing & Chronic Disease, University of Liverpool, L7 8TX Liverpool, UK
| | - Bowen Song
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Qingru Xu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Jionglong Su
- Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | | | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Wang C, Wu J, Xu L, Zou Q. NonClasGP-Pred: robust and efficient prediction of non-classically secreted proteins by integrating subset-specific optimal models of imbalanced data. Microb Genom 2020; 6:mgen000483. [PMID: 33245691 PMCID: PMC8116686 DOI: 10.1099/mgen.0.000483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023] Open
Abstract
Non-classically secreted proteins (NCSPs) are proteins that are located in the extracellular environment, although there is a lack of known signal peptides or secretion motifs. They usually perform different biological functions in intracellular and extracellular environments, and several of their biological functions are linked to bacterial virulence and cell defence. Accurate protein localization is essential for all living organisms, however, the performance of existing methods developed for NCSP identification has been unsatisfactory and in particular suffer from data deficiency and possible overfitting problems. Further improvement is desirable, especially to address the lack of informative features and mining subset-specific features in imbalanced datasets. In the present study, a new computational predictor was developed for NCSP prediction of gram-positive bacteria. First, to address the possible prediction bias caused by the data imbalance problem, ten balanced subdatasets were generated for ensemble model construction. Then, the F-score algorithm combined with sequential forward search was used to strengthen the feature representation ability for each of the training subdatasets. Third, the subset-specific optimal feature combination process was adopted to characterize the original data from different aspects, and all subdataset-based models were integrated into a unified model, NonClasGP-Pred, which achieved an excellent performance with an accuracy of 93.23 %, a sensitivity of 100 %, a specificity of 89.01 %, a Matthew's correlation coefficient of 87.68 % and an area under the curve value of 0.9975 for ten-fold cross-validation. Based on assessment on the independent test dataset, the proposed model outperformed state-of-the-art available toolkits. For availability and implementation, see: http://lab.malab.cn/~wangchao/softwares/NonClasGP/.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, PR China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, PR China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, PR China
| |
Collapse
|
12
|
A Method for Identifying Vesicle Transport Proteins Based on LibSVM and MRMD. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8926750. [PMID: 33133228 PMCID: PMC7591939 DOI: 10.1155/2020/8926750] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
With the development of computer technology, many machine learning algorithms have been applied to the field of biology, forming the discipline of bioinformatics. Protein function prediction is a classic research topic in this subject area. Though many scholars have made achievements in identifying protein by different algorithms, they often extract a large number of feature types and use very complex classification methods to obtain little improvement in the classification effect, and this process is very time-consuming. In this research, we attempt to utilize as few features as possible to classify vesicular transportation proteins and to simultaneously obtain a comparative satisfactory classification result. We adopt CTDC which is a submethod of the method of composition, transition, and distribution (CTD) to extract only 39 features from each sequence, and LibSVM is used as the classification method. We use the SMOTE method to deal with the problem of dataset imbalance. There are 11619 protein sequences in our dataset. We selected 4428 sequences to train our classification model and selected other 1832 sequences from our dataset to test the classification effect and finally achieved an accuracy of 71.77%. After dimension reduction by MRMD, the accuracy is 72.16%.
Collapse
|
13
|
Prediction of N7-methylguanosine sites in human RNA based on optimal sequence features. Genomics 2020; 112:4342-4347. [PMID: 32721444 DOI: 10.1016/j.ygeno.2020.07.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
N-7 methylguanosine (m7G) modification is a ubiquitous post-transcriptional RNA modification which is vital for maintaining RNA function and protein translation. Developing computational tools will help us to easily predict the m7G sites in RNA sequence. In this work, we designed a sequence-based method to identify the modification site in human RNA sequences. At first, several kinds of sequence features were extracted to code m7G and non-m7G samples. Subsequently, we used mRMR, F-score, and Relief to obtain the optimal subset of features which could produce the maximum prediction accuracy. In 10-fold cross-validation, results showed that the highest accuracy is 94.67% achieved by support vector machine (SVM) for identifying m7G sites in human genome. In addition, we examined the performances of other algorithms and found that the SVM-based model outperformed others. The results indicated that the predictor could be a useful tool for studying m7G. A prediction model is available at https://github.com/MapFM/m7g_model.git.
Collapse
|
14
|
Song B, Chen K, Tang Y, Ma J, Meng J, Wei Z. PSI-MOUSE: Predicting Mouse Pseudouridine Sites From Sequence and Genome-Derived Features. Evol Bioinform Online 2020; 16:1176934320925752. [PMID: 32565674 PMCID: PMC7285933 DOI: 10.1177/1176934320925752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/04/2022] Open
Abstract
Pseudouridine (Ψ) is the first discovered and the most prevalent posttranscriptional modification, which has been widely studied during the past decades. Pseudouridine was observed in almost all kinds of RNAs and shown to have important biological functions. Currently, the time-consuming and high-cost procedures of experimental approaches limit its uses in real-life Ψ site detection. Alternatively, by taking advantage of the explosive growth of Ψ sequencing data, the computational methods may provide a more cost-effective avenue. To date, the existing mouse Ψ site predictors were all developed based on sequence-derived features, and their performance can be further improved by adding the domain knowledge derived feature. Therefore, it is highly desirable to propose a genomic feature-based computational method to increase the accuracy and efficiency of the identification of Ψ RNA modification in the mouse transcriptome. In our study, a predictive framework PSI-MOUSE was built. Besides the conventional sequence-based features, PSI-MOUSE first introduced 38 additional genomic features derived from the mouse genome, which achieved a satisfactory improvement in the prediction performance, compared with other existing models. Moreover, PSI-MOUSE also features in automatically annotating the putative Ψ sites with diverse types of posttranscriptional regulations (RNA-binding protein [RBP]-binding regions, miRNA-RNA interactions, and splicing sites), which can serve as a useful research tool for the study of Ψ RNA modification in the mouse genome. Finally, 3282 experimentally validated mouse Ψ sites were also collected in a database with customized query functions. For the convenience of academic users, a website was built to provide a user-friendly interface for the query and analysis on the database. The website is freely accessible at www.xjtlu.edu.cn/biologicalsciences/psimouse and http://psimouse.rnamd.com. We introduced the genome-derived features to mouse for the first time, and we achieved a good performance in mouse Ψ site prediction. Compared with the existing state-of-art methods, our newly developed approach PSI-MOUSE obtained a substantial improvement in prediction accuracy, marking the reliable contributions of genomic features for the prediction of RNA modifications in a species other than human.
Collapse
Affiliation(s)
- Bowen Song
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Kunqi Chen
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Yujiao Tang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Jialin Ma
- Cancer Genome Computational Analysis, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jia Meng
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhen Wei
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
15
|
Meng C, Hu Y, Zhang Y, Guo F. PSBP-SVM: A Machine Learning-Based Computational Identifier for Predicting Polystyrene Binding Peptides. Front Bioeng Biotechnol 2020; 8:245. [PMID: 32296690 PMCID: PMC7137786 DOI: 10.3389/fbioe.2020.00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Polystyrene binding peptides (PSBPs) play a key role in the immobilization process. The correct identification of PSBPs is the first step of all related works. In this paper, we proposed a novel support vector machine-based bioinformatic identification model. This model contains four machine learning steps, including feature extraction, feature selection, model training and optimization. In a five-fold cross validation test, this model achieves 90.38, 84.62, 87.50, and 0.90% SN, SP, ACC, and AUC, respectively. The performance of this model outperforms the state-of-the-art identifier in terms of the SN and ACC with a smaller feature set. Furthermore, we constructed a web server that includes the proposed model, which is freely accessible at http://server.malab.cn/PSBP-SVM/index.jsp.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China.,College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yang Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
16
|
iPseU-Layer: Identifying RNA Pseudouridine Sites Using Layered Ensemble Model. Interdiscip Sci 2020; 12:193-203. [PMID: 32170573 DOI: 10.1007/s12539-020-00362-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
Pseudouridine represents one of the most prevalent post-transcriptional RNA modifications. The identification of pseudouridine sites is an essential step toward understanding RNA functions, RNA structure stabilization, translation process, and RNA stability; however, high-throughput experimental techniques remain expensive and time-consuming in lab explorations and biochemical processes. Thus, how to develop an efficient pseudouridine site identification method based on machine learning is very important both in academic research and drug development. Motived by this, we present an effective layered ensemble model designated as iPseU-Layer for identification of RNA pseudouridine sites. The proposed iPseU-Layer approach is essentially based on three different machine learning layers including: feature selection layer, feature extraction and fusion layer, and prediction layer. The feature selection layer reduces the dimensionality, which can be regarded as a data pre-processing stage. The feature extraction and fusion layer utilizes an ensemble method which is implemented through various machine learning algorithms to generate some outputs. The prediction layer applies classic random forest to identify the final results. Furthermore, we systematically conduct the validation experiments using cross-validation tests and independent test with the current state-of-the-art models. The proposed iPseU-Layer provides a promising predictive performance in terms of sensitivity, specificity, accuracy and Matthews correlation coefficient. Collectively, these findings indicate that the framework of iPseU-Layer is a feasible and effective strategy for the prediction of RNA pseudouridine sites.
Collapse
|