1
|
Kilic S, Bove J, So BN, Whitman MC. Strabismus in Genetic Syndromes: A Review. Clin Exp Ophthalmol 2025; 53:302-330. [PMID: 39948700 DOI: 10.1111/ceo.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 04/03/2025]
Abstract
Strabismus is a feature of many genetic syndromes, with highly variable penetrance. The congenital cranial dysinnervation disorders (CCDDs) result in paralytic strabismus, with limited eye movements. CCDDs result from either deficits in differentiation of the cranial motor neuron precursors or from abnormal axon guidance of the cranial nerves. Although most individuals with comitant strabismus are otherwise healthy, strabismus is a variable feature of many genetic syndromes, most commonly those associated with intellectual disability. We review 255 genetic syndromes in which strabismus has been described and discuss the variable penetrance. The association with intellectual disability and neurological disorders underscores the likely neurological basis of strabismus, but the variable penetrance emphasises the complexity of strabismus pathophysiology. The syndromes described here mostly result from loss of function or change in function of the responsible genes; one hypothesis is that nonsyndromic strabismus may result from altered expression or regulation of the same genes.
Collapse
Affiliation(s)
- Seyda Kilic
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jillian Bove
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Orthoptic Fellowship Program, Boston, Massachusetts, USA
| | | | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- F.M. Kirby Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Venkatesh A, McKenty T, Ali S, Sonntag D, Ravipaty S, Cui Y, Slate D, Lin Q, Christiansen A, Jacobson S, Kach J, Lim KH, Srinivasan V, Zinshteyn B, Aznarez I, Huryn LA, Li Z, Hufnagel RB, Liau G, Anderson K, Hoger J. Antisense Oligonucleotide STK-002 Increases OPA1 in Retina and Improves Mitochondrial Function in Autosomal Dominant Optic Atrophy Cells. Nucleic Acid Ther 2024; 34:221-233. [PMID: 39264859 PMCID: PMC11564677 DOI: 10.1089/nat.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/12/2024] [Indexed: 09/14/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is an inherited optic neuropathy most frequently associated with OPA1 mutations. Most variants result in haploinsufficiency, and patient cells express roughly half of the normal levels of OPA1 protein. OPA1 is a mitochondrial GTPase that is essential for normal mitochondrial function. We identified and characterized STK-002, an antisense oligonucleotide (ASO) designed to prevent the incorporation of a naturally occurring alternatively spliced nonproductive exon in OPA1. STK-002 dose dependently reduced the inclusion of this exon, and increased OPA1 protein in human cells, including ADOA patient-derived fibroblasts. ADOA patient cells manifest reduced mitochondrial respiration, and treatment with STK-002 improved the parameters of mitochondrial respiratory function in these cells. Since STK-002 increases OPA1 through the wild-type allele, we assessed retinal OPA1 in wild-type cynomolgus monkeys and rabbits after intravitreal administration of STK-002 or a rabbit-specific surrogate. Increased OPA1 protein was produced in retinal tissue in both species at 4 weeks after ASO injection and persisted in monkeys at 8 weeks. STK-002 and enhanced OPA1 immunofluorescence were visualized in retinal ganglion cells of cynomolgus monkeys treated with the ASO. Cumulatively, these data support the progression of STK-002 toward the clinic as the first potential disease-modifying treatment for ADOA.
Collapse
Affiliation(s)
| | | | - Syed Ali
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | | | - Yanyan Cui
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | - Qian Lin
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | | | - Jacob Kach
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | | | | | | | - Laryssa A. Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhiyu Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gene Liau
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | - Jeff Hoger
- Stoke Therapeutics, Bedford, Massachusetts, USA
| |
Collapse
|
3
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Wang J, Saviola AJ, Welty R, Liu S, Vaeth KF, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. RNA (NEW YORK, N.Y.) 2024; 30:1070-1088. [PMID: 38688558 PMCID: PMC11251525 DOI: 10.1261/rna.079917.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The recognition of the 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand, the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 (yU1) snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yU1 snRNA and the 5' ss RNA duplex. We replaced the zinc-finger (ZnF) domain of yeast U1C (yU1C) with its human counterpart, which resulted in a cold-sensitive growth phenotype and moderate splicing defects. We next added an auxin-inducible degron to yeast Luc7 (yLuc7) protein (to mimic the lack of Luc7Ls in human U1 snRNP). We found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of Prp40 and Snu71 (two other essential yU1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yU1 snRNP, and splicing plays a major role in the regulation of mitochondrial function in yeast.
Collapse
Affiliation(s)
- Subbaiah Chalivendra
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Shasha Shi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Zhiling Kuang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Joseph Giovinazzo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jingxin Wang
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Robb Welty
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Katherine F Vaeth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
5
|
Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Saviola AJ, Wang J, Welty R, Liu S, Vaeth K, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571893. [PMID: 38168357 PMCID: PMC10760170 DOI: 10.1101/2023.12.15.571893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The recognition of 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yeast U1 (yU1) snRNA and the 5' ss RNA duplex. We replaced the Zinc-Finger (ZnF) domain of yU1C with its human counterpart, which resulted in cold-sensitive growth phenotype and moderate splicing defects. Next, we added an auxin-inducible degron to yLuc7 protein and found that Luc7-depleted yU1 snRNP resulted in the concomitant loss of PRP40 and Snu71 (two other essential yeast U1 snRNP proteins), and further biochemical analyses suggest a model of how these three proteins interact with each other in the U1 snRNP. The loss of these proteins resulted in a significant growth retardation accompanied by a global suppression of pre-mRNA splicing. The splicing suppression led to mitochondrial dysfunction as revealed by a release of Fe 2+ into the growth medium and an induction of mitochondrial reactive oxygen species. Together, these observations indicate that the human U1C ZnF can substitute that of yeast, Luc7 is essential for the incorporation of the Luc7-Prp40-Snu71 trimer into yeast U1 snRNP, and splicing plays a major role in the regulation of mitochondria function in yeast.
Collapse
|
6
|
Wong DCS, Harvey JP, Jurkute N, Thomasy SM, Moosajee M, Yu-Wai-Man P, Gilhooley MJ. OPA1 Dominant Optic Atrophy: Pathogenesis and Therapeutic Targets. J Neuroophthalmol 2023; 43:464-474. [PMID: 37974363 PMCID: PMC10645107 DOI: 10.1097/wno.0000000000001830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- David C. S. Wong
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Joshua P. Harvey
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Neringa Jurkute
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Sara M. Thomasy
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Mariya Moosajee
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Patrick Yu-Wai-Man
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Michael J. Gilhooley
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| |
Collapse
|
7
|
Gonçalves M, Santos JI, Coutinho MF, Matos L, Alves S. Development of Engineered-U1 snRNA Therapies: Current Status. Int J Mol Sci 2023; 24:14617. [PMID: 37834063 PMCID: PMC10572768 DOI: 10.3390/ijms241914617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression. The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. Targeting aberrant RNA(s) may thus provide an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. To that purpose, the use of engineered U1 snRNA (either modified U1 snRNAs or exon-specific U1s-ExSpeU1s) has been applied as a potentially therapeutic strategy to correct splicing mutations, particularly those affecting the 5' splice-site (5'ss). Here we review and summarize a vast panoply of studies that used either modified U1 snRNAs or ExSpeU1s to mediate gene therapeutic correction of splicing defects underlying a considerable number of genetic diseases. We also focus on the pre-clinical validation of these therapeutic approaches both in vitro and in vivo, and summarize the main obstacles that need to be overcome to allow for their successful translation to clinic practice in the future.
Collapse
Affiliation(s)
- Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
9
|
Swirski S, May O, Ahlers M, Wissinger B, Greschner M, Jüschke C, Neidhardt J. In Vivo Efficacy and Safety Evaluations of Therapeutic Splicing Correction Using U1 snRNA in the Mouse Retina. Cells 2023; 12:cells12060955. [PMID: 36980294 PMCID: PMC10047704 DOI: 10.3390/cells12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.
Collapse
Affiliation(s)
- Sebastian Swirski
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Oliver May
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Malte Ahlers
- Visual Neuroscience, Department of Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Martin Greschner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
10
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
11
|
Al Ojaimi M, Salah A, El-Hattab AW. Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders. MEMBRANES 2022; 12:membranes12090893. [PMID: 36135912 PMCID: PMC9502208 DOI: 10.3390/membranes12090893] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 05/13/2023]
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission. These active processes occur continuously and simultaneously and are mediated by nuclear-DNA-encoded proteins that act on mitochondrial membranes. The balance between fusion and fission determines the mitochondrial morphology and adapts it to the metabolic needs of the cells. Therefore, these two processes are crucial to optimize mitochondrial function and its bioenergetics abilities. Defects in mitochondrial proteins involved in fission and fusion due to pathogenic variants in the genes encoding them result in disruption of the equilibrium between fission and fusion, leading to a group of mitochondrial diseases termed disorders of mitochondrial dynamics. In this review, the molecular mechanisms and biological functions of mitochondrial fusion and fission are first discussed. Then, mitochondrial disorders caused by defects in fission and fusion are summarized, including disorders related to MFN2, MSTO1, OPA1, YME1L1, FBXL4, DNM1L, and MFF genes.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Azza Salah
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
| | - Ayman W. El-Hattab
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pediatrics Department, University Hospital Sharjah, Sharjah 72772, United Arab Emirates
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi 505193, United Arab Emirates
- Correspondence: ; Tel.: +971-508875123
| |
Collapse
|
12
|
Almannai M, Salah A, El-Hattab AW. Mitochondrial Membranes and Mitochondrial Genome: Interactions and Clinical Syndromes. MEMBRANES 2022; 12:membranes12060625. [PMID: 35736332 PMCID: PMC9229594 DOI: 10.3390/membranes12060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria are surrounded by two membranes; the outer mitochondrial membrane and the inner mitochondrial membrane. They are unique organelles since they have their own DNA, the mitochondrial DNA (mtDNA), which is replicated continuously. Mitochondrial membranes have direct interaction with mtDNA and are therefore involved in organization of the mitochondrial genome. They also play essential roles in mitochondrial dynamics and the supply of nucleotides for mtDNA synthesis. In this review, we will discuss how the mitochondrial membranes interact with mtDNA and how this interaction is essential for mtDNA maintenance. We will review different mtDNA maintenance disorders that result from defects in this crucial interaction. Finally, we will review therapeutic approaches relevant to defects in mitochondrial membranes.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, Riyadh P.O. Box 22490, Saudi Arabia
- Correspondence:
| | - Azza Salah
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
| | - Ayman W. El-Hattab
- Department of Pediatrics, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi P.O. Box 505193, United Arab Emirates
| |
Collapse
|