1
|
Kharisova CB, Kitaeva KV, Solovyeva VV, Sufianov AA, Sufianova GZ, Akhmetshin RF, Bulgar SN, Rizvanov AA. Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review. Biomedicines 2025; 13:365. [PMID: 40002778 PMCID: PMC11852528 DOI: 10.3390/biomedicines13020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Eye diseases can significantly affect the quality of life of patients due to decreased visual acuity. Although modern ophthalmological diagnostic methods exist, some diseases of the visual system are asymptomatic in the early stages. Most patients seek advice from an ophthalmologist as a result of rapidly progressive manifestation of symptoms. A number of inherited and acquired eye diseases have only supportive treatment without eliminating the etiologic factor. A promising solution to this problem may be gene therapy, which has proven efficacy and safety shown in a number of clinical studies. By directly altering or replacing defective genes, this therapeutic approach will stop as well as reverse the progression of eye diseases. This review examines the concept of gene therapy and its application in the field of ocular pathologies, emphasizing the most recent scientific advances and their potential impacts on visual function status.
Collapse
Affiliation(s)
- Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, 119991 Moscow, Russia;
- Federal State-Financed Institution “Federal Centre of Neurosurgery”, Ministry of Health of the Russian Federation, 625032 Tyumen, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Rustem F. Akhmetshin
- The Department of Ophthalmology, Kazan State Medical University, 420012 Kazan, Russia;
| | - Sofia N. Bulgar
- Kazan State Medical Academy—Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare of the Russian Federation, 420012 Kazan, Russia;
- Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan, 420012 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (C.B.K.); (K.V.K.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
2
|
Luís MA, Goes MAD, Santos FM, Mesquita J, Tavares-Ratado P, Tomaz CT. Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives. Pharmaceutics 2025; 17:104. [PMID: 39861752 PMCID: PMC11768343 DOI: 10.3390/pharmaceutics17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Monogenic disorders are a group of human diseases caused by mutations in single genes. While some disease-altering treatments offer relief and slow the progression of certain conditions, the majority of monogenic disorders still lack effective therapies. In recent years, gene therapy has appeared as a promising approach for addressing genetic disorders. However, despite advancements in gene manipulation tools and delivery systems, several challenges remain unresolved, including inefficient delivery, lack of sustained expression, immunogenicity, toxicity, capacity limitations, genomic integration risks, and limited tissue specificity. This review provides an overview of the plasmid-based gene therapy techniques and delivery methods currently employed for monogenic diseases, highlighting the challenges they face and exploring potential strategies to overcome these barriers.
Collapse
Affiliation(s)
- Marco A. Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marcelo A. D. Goes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD), Av. Reyes Católicos, 28040 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paulo Tavares-Ratado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratory of Clinical Pathology, Sousa Martins Hospital, Unidade Local de Saúde (ULS) da Guarda, Av. Rainha D. Amélia, 6300-749 Guarda, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
4
|
Wang T, Yu T, Liu Q, Sung TC, Higuchi A. Lipid nanoparticle technology-mediated therapeutic gene manipulation in the eyes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102236. [PMID: 39005878 PMCID: PMC11245926 DOI: 10.1016/j.omtn.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD, Jhongli, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Crane R, Makia MS, Zeibak S, Tebbe L, Ikele L, Woods CR, Conley SM, Acharya G, Naash MI, Al-Ubaidi MR. Effective intravitreal gene delivery to retinal pigment epithelium with hyaluronic acid nanospheres. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102222. [PMID: 38868364 PMCID: PMC11168490 DOI: 10.1016/j.omtn.2024.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Inherited retinal degeneration (IRD) can cause a wide range of different forms of vision loss and blindness, and in spite of extensive advancements in gene therapy research, therapeutic approaches for targeting IRDs are still lacking. We have recently developed an approach for the intravitreal co-delivery of hyaluronic-acid nanospheres (HA-NSs) with sulfotyrosine (ST), effectively reaching the outer retina from the vitreal cavity. Here, our goal was to understand whether DNA-filled HA-NSs could generate gene expression in the outer retina. TxRed-labeled HA-NSs were compacted with plasmid DNA carrying a GFP reporter gene and intravitreally injected into the mouse retina. Follow-up at 4 weeks showed widespread gene expression in the outer retina and reduced, albeit present, expression at 8 weeks post-injection. Further analysis revealed this expression to be largely localized to the retinal pigment epithelium (RPE). These data show that intravitreal delivery of HA-NSs is a promising non-viral platform for the delivery of therapeutic genes and can generate pan-tissue, persistent gene expression in the RPE.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Mustafa S. Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Stephanie Zeibak
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Lars Tebbe
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Larissa Ikele
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ghanashyam Acharya
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
7
|
Brotherton C, Megaw R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes (Basel) 2024; 15:727. [PMID: 38927662 PMCID: PMC11202562 DOI: 10.3390/genes15060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone-rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs.
Collapse
Affiliation(s)
- Chloe Brotherton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU1, UK;
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Chalmers St., Edinburgh EH3 9HA, UK
| |
Collapse
|
8
|
Sun D, Sun W, Gao SQ, Lehrer J, Wang H, Hall R, Lu ZR. Intravitreal Delivery of PEGylated-ECO Plasmid DNA Nanoparticles for Gene Therapy of Stargardt Disease. Pharm Res 2024; 41:807-817. [PMID: 38443629 DOI: 10.1007/s11095-024-03679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Hong Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Ryan Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, United States.
| |
Collapse
|
9
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. Sci Rep 2024; 14:6958. [PMID: 38521856 PMCID: PMC10960846 DOI: 10.1038/s41598-024-57286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Balasankara Reddy Kaipa
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Sujata Ranshing
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Yogapriya Sundaresan
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Bhavani Nagarajan
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Ankur Jain
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Charles C Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Abbot F Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA.
| |
Collapse
|
10
|
Fujinami K, Waheed N, Laich Y, Yang P, Fujinami-Yokokawa Y, Higgins JJ, Lu JT, Curtiss D, Clary C, Michaelides M. Stargardt macular dystrophy and therapeutic approaches. Br J Ophthalmol 2024; 108:495-505. [PMID: 37940365 PMCID: PMC10958310 DOI: 10.1136/bjo-2022-323071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Stargardt macular dystrophy (Stargardt disease; STGD1; OMIM 248200) is the most prevalent inherited macular dystrophy. STGD1 is an autosomal recessive disorder caused by multiple pathogenic sequence variants in the large ABCA4 gene (OMIM 601691). Major advances in understanding both the clinical and molecular features, as well as the underlying pathophysiology, have culminated in many completed, ongoing and planned human clinical trials of novel therapies.The aims of this concise review are to describe (1) the detailed phenotypic and genotypic characteristics of the disease, multimodal imaging findings, natural history of the disease, and pathogenesis, (2) the multiple avenues of research and therapeutic intervention, including pharmacological, cellular therapies and diverse types of genetic therapies that have either been investigated or are under investigation and (3) the exciting novel therapeutic approaches on the translational horizon that aim to treat STGD1 by replacing the entire 6.8 kb ABCA4 open reading frame.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Nadia Waheed
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Yannik Laich
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Eye Center, Medical Center, University of Freiburg Faculty of Medicine, Freiburg, Germany
| | - Paul Yang
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
- Department of Health Policy and Management, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | - Jonathan T Lu
- SalioGen Therapeutics Inc, Lexington, Massachusetts, USA
| | - Darin Curtiss
- Applied Genetic Technologies Corporation, Alachua, Florida, USA
| | - Cathryn Clary
- SalioGen Therapeutics Inc, Lexington, Massachusetts, USA
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Weller M, Müller B, Stieger K. Long-Term Porcine Retina Explants as an Alternative to In Vivo Experimentation. Transl Vis Sci Technol 2024; 13:9. [PMID: 38477924 PMCID: PMC10941994 DOI: 10.1167/tvst.13.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose The porcine retina represents an optimal model system to study treatment approaches for inherited retinal dystrophies owing to close anatomical similarities to the human retina, including a cone enriched visual streak. The aim of this work was to establish a protocol to keep explants in culture for up to 28 days with good morphological preservation. Methods Two to four retina explants per eye were obtained from the central part of the retina and transferred onto a membrane insert with the photoreceptors facing down. Different medium compositions using Neurobasal-A medium containing 100 or 450 mg/dL glucose and combinations of fetal calf serum, B-27 with or without insulin and N-2 were tested. We developed a tissue quality score with robust markers for different retinal cell types (protein kinase C alpha, peanut agglutinin and 4',6-diamidino-2-phenylindol). Results Retinae were kept until 28 days with only little degradation. The best results were attained using Neurobasal-A medium containing 100 mg/dL glucose supplemented with B-27 containing insulin and N-2. For an easy preparation process, it is necessary to minimize transport time and keep the eyes on ice until dissected. Heat-mediated decontamination by the butcher has to be avoided. Conclusions Using a standardized protocol, porcine retina explants represent an easy to handle intermediate model between in vitro and in vivo experimentation. This model system is robustly reproducible and contributes to the implementation of the 3R principle to minimize animal experimentation. Translational Relevance This model can be used to test future therapeutic approaches for inherited retinal dystrophies.
Collapse
Affiliation(s)
- Maria Weller
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| | - Brigitte Müller
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
12
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. RESEARCH SQUARE 2023:rs.3.rs-3740880. [PMID: 38196579 PMCID: PMC10775399 DOI: 10.21203/rs.3.rs-3740880/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- University of North Texas Health Science Center at Fort Worth
| | | | - Sujata Ranshing
- University of North Texas Health Science Center at Fort Worth
| | | | | | | | | | | | | | | | | | - Abbot F Clark
- University of North Texas Health Science Center at Fort Worth
| | | | | |
Collapse
|
13
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
14
|
Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther 2023; 31:2755-2766. [PMID: 37337429 PMCID: PMC10491995 DOI: 10.1016/j.ymthe.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Lyes Toualbi
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick V Almeida
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mariya Moosajee
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK.
| |
Collapse
|
15
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Xia J, Gu L, Pan Q. The landscape of basic gene therapy approaches in inherited retinal dystrophies. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1193595. [PMID: 38983091 PMCID: PMC11182181 DOI: 10.3389/fopht.2023.1193595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2024]
Abstract
The study of gene therapies has been of particular interest in recent decades due to their promising potential to slow or even rescue the degeneration of the retina in inherited retinal dystrophies (IRDs). Here, we review the current approaches to gene therapy trials on IRDs, including the selection of animal models, therapeutic window, vectors and dosages. Mice are typically the first choice of animal models and recombinant adeno-associated virus (rAAV) of serotype 8 is the most common vector for loss-of-function IRDs. Furthermore, the therapeutic window should be considered to ensure efficacy before retinal degeneration occurs if possible, and dosages must be tailored to each approach.
Collapse
Affiliation(s)
| | | | - Qing Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Li W, Chen L, Gu Z, Chen Z, Li H, Cheng Z, Li H, Zou L. Co-delivery of microRNA-150 and quercetin by lipid nanoparticles (LNPs) for the targeted treatment of age-related macular degeneration (AMD). J Control Release 2023; 355:358-370. [PMID: 36738972 DOI: 10.1016/j.jconrel.2023.01.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is characterized by choroidal neovascularization (CNV), which leads to severe vision loss in middle-aged and elderly patients. Current treatments for CNV show weak, transient efficacy, and they can cause several adverse effects. A potential new treatment is to use microRNA-150 (mR150), which regulates physiological and pathological angiogenesis by modulating the expression of CXCR4 at the post-transcriptional level. Here, we developed solid lipid nanoparticles that we modified with an Asp-Gly-Arg peptide to target endothelial cells during abnormal angiogenesis, then we co-loaded them with mR150 and the anti-angiogenic drug quercetin. The resulting nanoparticles had an average size around 200 nm and showed strong ability to target the fundus and inhibit CNV for up to two weeks in a mouse model without causing retinal toxicity. They significantly enhanced the uptake of mR150 in vitro compared to free mR150 or nanoparticles without peptide. Our study suggests that co-administration of mR150 and quercetin has potential for treating age-related macular degeneration and that nanoparticles modified with Asp-Gly-Arg peptide are an effective platform for the co-delivery of small-molecule and nucleic acid drugs via intravitreal injection.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medicine, Institute for Advanced Study, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, People's Republic of China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhoujiang Chen
- School of Basic Medicine, Institute for Advanced Study, Chengdu University, Chengdu 610106, People's Republic of China
| | - Hong Li
- Affiliated Hospital & Clnical Medical College of Chengdu University, Chengdu 610081, People's Republic of China
| | - Zhongxia Cheng
- Affiliated Hospital & Clnical Medical College of Chengdu University, Chengdu 610081, People's Republic of China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, People's Republic of China.
| |
Collapse
|
18
|
Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023; 40:27-46. [PMID: 36600047 PMCID: PMC9812548 DOI: 10.1007/s11095-022-03460-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
19
|
The future of non-viral gene delivery for the treatment of inherited retinal diseases. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:354. [DOI: 10.1016/j.omtn.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|