1
|
Wang Z, Qiao X, Xue K, Chen Q, Li A. PTOV1 interacts with ZNF449 to promote colorectal cancer development. Commun Biol 2025; 8:489. [PMID: 40133702 PMCID: PMC11937480 DOI: 10.1038/s42003-025-07930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
PTOV1 is recognized to have a significant role in various human cancers, including prostate cancer. However, it remains unclear what its clinical significance and biological role are in colorectal cancer (CRC). TCGA, NCBI/GEO, and Kaplan-Meier plot database mining provided important clues into the function and clinical importance of PTOV1 in CRC. Western blotting, immunohistochemistry, and immunofluorescence were utilized to discover PTOV1 protein levels in CRC cell lines and tissues. To explore the involvement of PTOV1 in the development of CRC and the underlying mechanisms, several in-vitro and in-vivo studies were executed, such as CCK-8 assays, colony formation, transwell assays, qRT-PCR, Co-IP, GST pull-down, immunostaining, and mouse xenograft assays. It was shown that PTOV1 expression level was upregulated in the tissues and cells of human CRC. PTOV1 high-expression level was associated with short survival. ZNF449 interacted with PTOV1 and accelerated CRC development in vitro and in vivo. Through Co-IP and GST pull-down studies, the physical interaction of PTOV1/ZNF449 was demonstrated. Furthermore, PTOV1 directly bound ZNF449, and this complex synergistically promoted the transcription of MYC. In addition, the PTOV1/ZNF449 interaction was disrupted by the TAT- PTOV1 (125-283 aa) protein leading to inhibit the CRC development in a xenografted mouse model. According to these findings, PTOV1 has an essential role in CRC progression, and PTOV1/ZNF449 interaction could be a possible therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinwei Qiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianzhi Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Anshu Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
3
|
Luo Y, Zhang J, Jiao Y, Huang H, Ming L, Song Y, Niu Y, Tang X, Liu L, Li Y, Jiang Y. Dihydroartemisinin abolishes cisplatin-induced nephrotoxicity in vivo. J Nat Med 2024; 78:439-454. [PMID: 38351420 DOI: 10.1007/s11418-024-01783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research On Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Jiangxi, China
| | - Liangshan Ming
- Institute for Advanced Study, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yanlong Niu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Jiangxi, China
| | - Xiaolu Tang
- Department of Human Anatomy, School of Basic Medical Science, Gannan Medical University, Jiangxi, China
| | - Liwei Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Chen L, Gao W, Sha C, Yang M, Lin L, Li T, Wei H, Chen Q, Xing J, Zhang M, Zhao S, Xu W, Li Y, Zhu X. SIAH1-mediated RPS3 ubiquitination contributes to chemosensitivity in epithelial ovarian cancer. Aging (Albany NY) 2022; 14:6202-6226. [PMID: 35951361 PMCID: PMC9417229 DOI: 10.18632/aging.204211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The E3 ligase SIAH1 is deregulated in human cancers and correlated with poor prognosis, but its contributions to chemoresistance in epithelial ovarian cancer (EOC) are not evident. Herein we found that SIAH1 was decreased in EOC tumour tissues and cell lines and negatively correlated with the RPS3 levels. SIAH1 overexpression suppressed tumour cell growth, colony formation, invasion, metastasis, and cisplatin resistance in vivo and in vitro. SIAH1 promoted RPS3 ubiquitination and degradation using the RING-finger domain, and these steps were required for RPS3 localization to the cytoplasm, which led to subsequent NF-κB inactivation and thereby conferred chemosensitivity. Moreover, ectopic expression of RPS3 or depletion of RPS3 ubiquitination mediated by SIAH1 via the K214R mutant significantly impaired cisplatin-induced tumour suppression in cells stably expressing SIAH1. Together, our findings reveal a tumour suppressor function of SIAH1 and provide evidence showing that the SIAH1-RPS3-NF-κB axis may act as an appealing strategy for tackling treatment resistance in EOC.
Collapse
Affiliation(s)
- Lu Chen
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wujiang Gao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunli Sha
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Meiling Yang
- Obstetrics and Gynecology, The First People's Hospital of Nantong City, Nantong, Jiangsu, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Taoqiong Li
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hong Wei
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Chen
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijie Zhao
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenlin Xu
- Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Central laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,International Genome Center of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Wu H, Liang J. Contributions of NFKB1 -94insertion/deletion ATTG polymorphism to the susceptibility of gastrointestinal cancers: A meta-analysis. J Cell Mol Med 2021; 25:10674-10683. [PMID: 34672421 PMCID: PMC8581328 DOI: 10.1111/jcmm.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor-kappa B1 (NF-κB1), a pleiotropic transcription factor, functions as a critical contributor to tumorigenesis. Growing numbers of case-control studies were carried out to analyse the potential contribution of NF-κB1 gene variants to gastrointestinal cancer risk, yet remains conflicting conclusions. Therefore, we conducted this most up-to-date meta-analysis to evaluate the relationship between NF-κB1 gene insertion (I)/deletion (D) polymorphism, namely -94ins/delATTG or rs28362491, and the susceptibility to gastrointestinal cancers. We searched PubMed, EMBASE and MEDLINE databases updated in April 2021 for relevant studies. Meta-analysis was carried out by software Stata11.0. The quantification of the relationship was determined by computing the combined odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Sensitivity analysis, the funnel plot and Begg's rank correlation test were also applied. Our findings indicate that -94ins/delATTG polymorphism could not significantly impact the susceptibility to gastrointestinal cancers. Under any five genetic models, -94ins/delATTG polymorphism was not remarkedly linked to the risk of colorectal, gastric and oesophageal cancer, respectively. The significant role of -94ins/delATTG was only observed in some certain subgroups. Findings here suggest that NF-κB1 gene -94ins/delATTG polymorphism may not predispose to gastrointestinal cancer susceptibility.
Collapse
Affiliation(s)
- Hanqiang Wu
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| | - Jianrong Liang
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|