1
|
El Moheb M, Shen C, Kim S, Putman K, Zhang H, Ruff SM, Witt R, Tsung A. Stage-Specific Tumoral Gene Expression Profiles of Black and White Patients with Colon Cancer. Ann Surg Oncol 2025; 32:736-749. [PMID: 39580376 PMCID: PMC11698818 DOI: 10.1245/s10434-024-16550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Black patients with colon cancer (CC) exhibit more aggressive tumor biology and higher treatment resistance than white patients, even after adjusting for clinical and demographic factors. We investigated stage-specific transcriptional differences in tumor profiles of Black and white patients with CC. PATIENTS AND METHODS Patients with CC from The Cancer Genome Atlas Colon Adenocarcinoma database were categorized by disease stage and propensity-score matched between Black and white patients. Differential gene expression and pathway enrichment analyses were performed for each stage. Logistic regression and quadratic discriminant analysis (QDA) models were developed using consistently differentially expressed genes. RESULTS Of 247 patients, 128 had localized (22% Black), 81 had regional (74% Black), and 38 had distant disease (29% Black). Differential expression analysis revealed differences in 312 genes for localized, 105 for regional, and 199 for distant stages between Black and white patients. Pathway enrichment analysis showed downregulation of the IL-17 pathway in Black patients with localized disease. In total, five genes exhibited race-specific transcriptional differences across all stages: RAMACL, POLR2J3, POLR2J2, MUC16, and PRSS21. Logistic regression and QDA model performance indicated that these genes represent racial differences [area under the receiver operating characteristic curve (AUC): 0.863 and 0.880]. CONCLUSIONS Significant transcriptional differences exist in CC between Black and white patients changing dynamically across disease stages, and involving genes with broad functions. Key findings include IL-17 pathway downregulation in Black patients with localized disease and a five-gene signature consistent across all stages. These findings may explain aspects of racial disparities in CC, emphasizing the need for race-specific research and treatment strategies.
Collapse
Affiliation(s)
- Mohamad El Moheb
- School of Data Science, University of Virginia, Charlottesville, VA, USA
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Susan Kim
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Kristin Putman
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Samantha M Ruff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Russell Witt
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Bai Y, Wang X, Wang B. Pan-Cancer Analysis of the Prognostic and Immunotherapeutic Value of PDGFB. Immunotargets Ther 2025; 14:35-49. [PMID: 39872696 PMCID: PMC11771179 DOI: 10.2147/itt.s486609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Cancer is a widespread epidemic that affects millions of individuals across the world. Identifying novel cancer targets is crucial to developing more effective cancer treatments. Platelet-derived growth factor-B (PDGFB) plays a critical role in various tumor processes, including angiogenesis and lymphatic metastasis. However, there is a lack of research on the role of PDGFB in these processes. Methods To address this issue, we conducted a comprehensive analysis utilizing multiple online databases to investigate the expression, prognostic, tumor stemness, and immunological effect of PDGFB. In addition, clinical samples were validated using immunohistochemistry. Results Our findings revealed that PDGFB was highly expressed in a diverse range of cancer types, and its expression and genetic modifications were significantly associated with clinical outcomes in certain tumors. In general, high expression of PDGFB in tumors is associated with poor prognosis. Surprisingly, PDGFB was found to be highly expressed in renal clear cell carcinoma but was associated with good prognosis. In contrast, PDGFB was low expressed in lung carcinoma, but its expression was found to improve patient survival. These findings demonstrate the complex role of PDGFB in different cancer types. The study also demonstrated that PDGFB was linked to RNA and DNA stemness in 15 and 36 tumor types, respectively, and had a positive association with tumor lymphocyte infiltration. Notably, PDGFB was found to be associated with immune modulators. PDGFB, which is involved in various immune responses, influences the malignant characteristics of various cancer types and controls immune cell infiltration. We confirmed that PDGFB positively correlated with CD8 and PDL1 expression in lower grade glioma. Conclusion This study concludes that PDGFB may serve as a potential prognostic marker and a potential targetable pathway in cancer immunotherapy. Overall, the study sheds new light on the role of PDGFB in cancer and highlights its potential clinical significance.
Collapse
Affiliation(s)
- Yuwei Bai
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoyun Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Bei Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
3
|
Wang X, Xiao B, Zhong F, Zhou Y, Wang Q, Jiang J. ZSCAN16 expedites hepatocellular carcinoma progression via activating TBC1D31. Cell Div 2024; 19:31. [PMID: 39511655 PMCID: PMC11546084 DOI: 10.1186/s13008-024-00135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is fatal and poses great challenges to early diagnosis and effective treatment. This paper sought to expound the function of Zinc finger and SCAN domain-containing protein 16 (ZSCAN16) and TBC1 domain family member 31 (TBC1D31) in HCC progression. METHODS ZSCAN16 and TBC1D31 levels were detected by RT-qPCR, Western blot, and immunohistochemistry. The transcriptional regulation of TBC1D31 by ZSCAN16 was demonstrated by ChIP-qPCR and dual-luciferase assay. Colony formation assay, migration and invasion assays, TUNEL staining, CCK-8 assay, flow cytometry, and western blot analysis were adopted to evaluate the biological activity of HCC cells. The role of the ZSCAN16/TBC1D31 axis in HCC was demonstrated by lentiviral gene intervention combined with functional rescue experiments. Hep3B cells were used to establish a nude mouse xenograft tumor model to study the role of the ZSCAN16/TBC1D31 axis in vivo. RESULTS ZSCAN16 and TBC1D31 were highly expressed in HCC. Downregulation of ZSCAN16 repressed the proliferation, migration, and invasion of HCC cells while promoting apoptosis, as well as curbing tumor growth in vivo. Mechanistic studies showed that ZSCAN16 mediated the transcriptional activation of TBC1D31, which in turn led to tumor development. TBC1D31 overexpression reversed the inhibitory effect of ZSCAN16 knockdown on the malignant behavior and tumor growth of HCC cells and accelerated tumor development. CONCLUSION ZSCAN16 mediates transcriptional activation of TBC1D31 and promotes HCC progression.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Hepatobiliary Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, P.R. China
| | - Bo Xiao
- Department of Imaging, Pingxiang People's Hospital, NO.88, Wugongshan Middle Avenue, Pingxiang, Jiangxi, 337000, P.R. China.
| | - Fuping Zhong
- Department of Hepatobiliary Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, P.R. China
| | - Yong Zhou
- Department of Hepatobiliary Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, P.R. China
| | - Qibo Wang
- Department of Hepatobiliary Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, P.R. China
| | - Jihao Jiang
- Department of Hepatobiliary Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, P.R. China
| |
Collapse
|
4
|
Fu H, Dong S, Li K. Identification of SLC31A1 as a prognostic biomarker and a target for therapeutics in breast cancer. Sci Rep 2024; 14:25120. [PMID: 39448672 PMCID: PMC11502855 DOI: 10.1038/s41598-024-76162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Copper-induced cell death is regulated through protein lipoylation, which is critical for gene expression and phenotypic regulation. Neverless, the role of Cuproptosis-related genes in breast cancer (BC) remains unknown. This study aimed to construct a prognostic signature based on the expression of Cuproptosis-related genes in order to guide the diagnosis and treatment for BC. Cuproptosis-related genes prognostic signature has ata of 1250 BC tissues and 583 normal breast tissues were obtained from The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and GEO GSE65212. The prognostic signature was established and evaluated with nineteen Cuproptosis-related genes. A series of in silico analyses based on SLC31A1, included expression analysis, independent prognostic analysis, correlation analysis, immune-related analysis and survival analysis. Finally, a series of cell experiments (including quantitative real-time polymerase chain reaction and western blot), and mice experiments were applied to evaluate the impact of SLC31A1 on BC. Cuproptosis-related genes prognostic signature has good predictive promising for survival in BC patients. We discovered that SLC31A1SLC31A1 was overexpressed in BC and was its independent prognostic factor. High expression of the SLC31A1 was correlated with poor prognosis and immune infiltrating of BC. SLC31A1 expression is associated with immune, chemotherapeutic and targeted therapy outcomes in BC. The proliferation, migration, and invasiveness of Her2 + enriched BC cells were decreased by SLC31A1 knockdown, also resulting in a decrease in tumor volume in mouse model. SLC31A1 is a candidate biomarker or therapeutic target in precision oncology, with diagnostic and prognostic significance in BC.
Collapse
Affiliation(s)
- Hongtao Fu
- Department of Breast Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410006, Hunan, China
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210000, China
| | - Shanshan Dong
- Department of Medicine, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Kun Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha, 410000, China.
| |
Collapse
|
5
|
Kondaboina S, Parrish O, Parada CA, Ferreira M. Whole Exome Sequencing of Intracranial Epidermoid Cysts Reveals Immune-Associated Mechanistic and Potential Targets. Cancers (Basel) 2024; 16:3487. [PMID: 39456581 PMCID: PMC11506683 DOI: 10.3390/cancers16203487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.
Collapse
Affiliation(s)
| | | | - Carolina Angelica Parada
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| |
Collapse
|
6
|
Wu Y, Wang H, Qu C, Deng X, Li N, Yue S, Xu W, Chen Y, Zhou M. Pig-derived ECM-SIS provides a novel matrix gel for tumor modeling. Biomed Phys Eng Express 2024; 10:065002. [PMID: 39178888 DOI: 10.1088/2057-1976/ad72fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
The absence of effective extracellular matrix to mimic the natural tumor microenvironment remains a significant obstacle in cancer research. Matrigel, abundant in various biological matrix components, is limited in its application due to its high cost. This has prompted researchers to explore alternative matrix substitutes. Here, we have investigated the effects of the extracellular matrix derived from pig small intestinal submucosa (ECM-SIS) in xenograft tumor modeling. Our results showed that the pig-derived ECM-SIS effectively promotes the establishment of xenograft tumor models, with a tumor formation rate comparable to that of Matrigel. Furthermore, we showed that the pig-derived ECM-SIS exhibited lower immune rejection and fewer infiltrating macrophages than Matrigel. Gene sequencing analysis demonstrated only a 0.5% difference in genes between pig-derived ECM-SIS and Matrigel during the process of tumor tissue formation. These differentially expressed genes primarily participate in cellular processes, biological regulation, and metabolic processes. These findings emphasize the potential of pig-derived ECM-SIS as a cost-effective option for tumor modeling in cancer research.
Collapse
Affiliation(s)
- Yanhua Wu
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Hao Wang
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Changbo Qu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, People's Republic of China
| | - Xuesong Deng
- Department of Hepatobiliary Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong Province, People's Republic of China
| | - Na Li
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Sile Yue
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Wenjing Xu
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| | - Yinghua Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, People's Republic of China
| | - Ming Zhou
- BGI-Shenzhen, BGI.Research,-Shenzhen, 518110, Guangdong Province, People's Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518110, Guangdong Province, People's Republic of China
- Liver-biotechnology (Shenzhen) Co., ltd, Shenzhen, 518110, Guangdong Province, People's Republic of China
| |
Collapse
|
7
|
Liu S, Lv S, Li X, Lu W, Chen S. The signature genes of cuproptosis associates with tumor immune microenvironment and predicts prognosis in kidney renal clear cell carcinoma. Front Oncol 2024; 14:1409620. [PMID: 39206152 PMCID: PMC11349642 DOI: 10.3389/fonc.2024.1409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cuproptosis is a new form of cell death, which has great potential to be developed in tumors treatment. Our study aimed to explore the predictive value of cuproptosis-related genes (CRGs) in various cancers, with a focus on kidney renal clear cell carcinoma (KIRC). Method A total of 9502 pan-cancer patients from TCGA cohort were enrolled. The relationships between CRGs and overall survival (OS) or disease-free survival (DFS) were analyzed. Gene Set Variation Analysis (GSVA) enrichment analysis was performed to explore the expression differences of CRGs. Multivariate Cox regression analysis was used to evaluate the association between GSVA scores and patient survival. KEGG and GO analyses were employed to identify the biological functions and pathways. The expression and prognostic characteristics of FDX1 were examined to evaluate the correlation between FDX1 and KIRC. Cell experiments were conducted to verify whether FDX1 was involved in cuproptosis of Caki-1 cells induced by Elesclomol. Results Positive cuproptosis signature genes(pos.cu.sig) exhibited the correlation with prognosis in KIRC, and all of these genes showed differential expression between KIRC and normal tissues. The GSVA score of pos.cu.sig was associated with excellent survival (HR=0.61, P<0.05), which can also serve as an independent prognostic factor for KIRC. There was a close correlation between pos.cu.sig and the tumor immune microenvironment in KIRC by KEGG and GO analysis. FDX1 expression was correlated with KIRC grade and positively associated with prognosis in KIRC patients. Compared with the control group, cell proliferation and migration were significantly inhibited, FDX1 expression was up-regulated, and Fe-S cluster protein content was decreased of Caki-1 cells after Elesclomol treatment. Conclusions This study provides compelling evidence that cuproptosis is closely linked to the prognosis of KIRC. FDX1 holds promise as a viable biomarker and therapeutic target for assessing the effectiveness of tumor immunotherapy in KIRC.
Collapse
Affiliation(s)
- Shuhan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijie Lv
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiguo Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shengjie Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Song N, Wang Z, Shi P, Cui K, Fan Y, Zeng L, Di W, Li J, Su W, Wang H. Comprehensive analysis of signaling lymphocyte activation molecule family as a prognostic biomarker and correlation with immune infiltration in clear cell renal cell carcinoma. Oncol Lett 2024; 28:354. [PMID: 38881710 PMCID: PMC11176890 DOI: 10.3892/ol.2024.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/17/2024] [Indexed: 06/18/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer and accounts for 2-3% of all cancer cases. Furthermore, a growing number of immunotherapy approaches are being used in antitumor treatment. Signaling lymphocyte activation molecule family (SLAMF) members have been well studied in several cancers, whereas their roles in ccRCC have not been investigated. The present study comprehensively assessed the molecular mechanisms of SLAMF members in ccRCC, performed using The Cancer Genome Atlas database, with analysis of gene transcription, prognosis, biological function, clinical features, tumor-associated immune cells and the correlation with programmed cell death protein 1/programmed death-ligand 1 immune checkpoints. Simultaneously, the Tumor Immune Dysfunction and Exclusion algorithm was used to predict the efficacy of immune checkpoint blockade (ICB) therapy in patients with high and low SLAMF expression levels. The results demonstrated that all SLAMF members were highly expressed in ccRCC, and patients with high expression levels of SLAMF1, 4, 7 and 8 had a worse prognosis that those with low expression. SLAMF members were not only highly associated with immune activation but also with immunosuppressive agents. The level of immune cell infiltration was associated with the prognosis of patients with ccRCC with high SLAMF expression. Moreover, high ICB response rates were observed in patients with high expression levels of SMALF1 and 4. In summary, SLAMF members may serve as future potential biomarkers for predicting the prognosis of ccRCC and emerge as a novel immunotherapy target.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Ziwei Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Pingyu Shi
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Kai Cui
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yanwu Fan
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Liqun Zeng
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Wenyu Di
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jinsong Li
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
9
|
Zhou H, Fu N, Tian Y, Zhang N, Fan Q, Zeng F, Wang Y, Bai G, Chen B. Transcriptome Sequencing of Gingival Tissues from Impacted Third Molars Patients Reveals the Alterations of Gene Expression. Comb Chem High Throughput Screen 2024; 27:2350-2365. [PMID: 38178683 DOI: 10.2174/0113862073256803231114095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The removal of impacted third molars by surgery may occur with a series of complications, whereas limited information about the postoperative pathogenesis is available. The objective of this study is to identify changes in gene expression after flap surgical removal of impacted third molars and provide potential information to reduce postoperative complications. METHODS The gingival tissues of twenty patients with flap surgical removal of impacted third molars and twenty healthy volunteers were collected for gene expression testing. The collected gingival tissues were used RNA sequencing technology and quantitative real-time PCR validation was performed. DEG was mapped to protein databases such as GO and KEGG for functional annotation and, based on annotation information, for mining of differential expression genes in patients with mpacted third molars. RESULTS A total of 555 genes were differentially expressed. Among the top up-regulated genes, HLA-DRB4, CCL20, and CXCL8 were strongly associated with immune response and signal transduction. Among the top down-regulated genes, SPRR2B, CLDN17, LCE3D and LCE3E were related to keratinocyte differentiation, IFITM5, and BGLAP were related to bone mineralization, UGT2B17 is associated with susceptibility to osteoporosis. KEGG results showed that the DEGs were related to multiple disease-related pathways. CONCLUSION This first transcriptome analysis of gingival tissues from patients with surgical removal of impacted third molars provides new insights into postoperative genetic changes. The results may establish a basis for future research on minimizing the incidence of complications after flap-treated third molars.
Collapse
Affiliation(s)
- Haolin Zhou
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nanqing Fu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yuan Tian
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nini Zhang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Qin Fan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fengjiao Zeng
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yueyue Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Guohui Bai
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bin Chen
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| |
Collapse
|
10
|
Wu A, Ye M, Ma T, She Z, Li R, Shi H, Yang L, Yi M, Li H. TBC1D25 alleviates nonalcoholic steatohepatitis by inhibiting abnormal lipid accumulation and inflammation. J Cell Physiol 2023; 238:393-406. [PMID: 36710714 DOI: 10.1002/jcp.30934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a strong stimulant of cardiovascular diseases, affecting one-quarter of the world's population. TBC1 domain family member 25 (TBC1D25) regulates the development of myocardial hypertrophy and cerebral ischemia-reperfusion injury; however, its effect on NAFLD/nonalcoholic steatohepatitis (NASH) has not been reported. In this study, we demonstrated that TBC1D25 expression is upregulated in NASH. TBC1D25 deficiency aggravated hepatic steatosis, inflammation, and fibrosis in NASH. In vitro tests revealed that TBC1D25 overexpression restrained NASH responses. Subsequent mechanistic validation experiments demonstrated that TBC1D25 interfered with NASH progression by inhibiting abnormal lipid accumulation and inflammation. TBC1D25 deficiency significantly promoted NASH occurrence and development. Therefore, TBC1D25 may potentially be used as a clinical therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Anding Wu
- Department of General Surgery, Huanggang Central Hospital, Huanggang, China
| | - Mao Ye
- Department of Cardiology, HuangGang Central Hospital, Huanggang, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Ling Yang
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Maolin Yi
- Surgery of Mammary Gland and Thyroid Gland, Huanggang Central Hospital, Huanggang, China
| | - Huoping Li
- Department of Cardiology, HuangGang Central Hospital, Huanggang, China
| |
Collapse
|
11
|
The Role of Long Noncoding RNA (lncRNAs) Biomarkers in Renal Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010643. [PMID: 36614082 PMCID: PMC9820502 DOI: 10.3390/ijms24010643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma is one of the common cancers whose incidence and mortality are continuously growing worldwide. Initially, this type of tumour is usually asymptomatic. Due to the lack of reliable diagnostic markers, one-third of ccRCC patients already have distant metastases at the time of diagnosis. This underlines the importance of establishing biomarkers that would enable the prediction of the disease's course and the risk of metastasis. LncRNA, which modulates genes at the epigenetic, transcriptional, and post-transcriptional levels, appears promising. The actions of lncRNA involve sponging and sequestering target miRNAs, thus affecting numerous biological processes. Studies have confirmed the involvement of RNAs in various diseases, including RCC. In this review, we focused on MALAT1 (a marker of serious pathological changes and a factor in the promotion of tumorigenesis), RCAT1 (tumour promoter in RCC), DUXAP9 (a plausible marker of localized ccRCC), TCL6 (exerting tumour-suppressive effects in renal cancer), LINC00342 (acting as an oncogene), AGAP2 Antisense1 (plausible predictor of RCC progression), DLEU2 (factor promoting tumours growth via the regulation of epithelial-mesenchymal transition), NNT-AS1 (sponge of miR-22 contributing to tumour progression), LINC00460 (favouring ccRCC development and progression) and Lnc-LSG1 (a factor that may stimulate ccRCC metastasis).
Collapse
|
12
|
Ye J, Li P, Zhang H, Wu Q, Yang D. Identifying Prognostic Biomarkers Related to m6A Modification and Immune Infiltration in Renal Cell Carcinoma. Genes (Basel) 2022; 13:2059. [PMID: 36360294 PMCID: PMC9690957 DOI: 10.3390/genes13112059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the largest category of kidney tumors and usually does not have a good prognosis. N6-methyladenosine(m6A) and immune infiltration have received increased attention because of their great influence on the clinical outcome and prognosis of cancer patients. METHODS We identified hub genes through multi-dimensional screening, including DEGs, PPI analysis, LASSO regression, and random forest. Meanwhile, GO/KEGG enrichment, cMAP analysis, prognostic analysis, m6A prediction, and immune infiltration analysis were performed to understand the potential mechanism and screen therapeutic drugs. RESULTS We screened 275 downregulated and 185 upregulated genes using three GEO datasets and the TCGA dataset. In total, 82 candidate hub genes were selected using STRING and Cytoscape. Enrichment analysis illustrated that the top 3 biological process terms and top 1 KEGG term were related to immunity. cMAP analysis showed some antagonistic molecules can be candidate drugs for the treatment of RCC. Then, six hub genes (ERBB2, CASR, P2RY8, CAT, PLAUR, and TIMP1) with strong predictive values for prognosis and clinicopathological features were selected. Meanwhile, P2RY8, ERBB2, CAT, and TIMP1 may obtain m6A modification by binding METTL3 or METTL14. On the other hand, differential expression of CAT, ERBB2, P2RY8, PLAUR, and TIMP1 affects the infiltration of the majority of immune cells. CONCLUSIONS We identified six hub genes through multi-dimensional screening. They all possess strong predictive value for prognosis and clinicopathological features. Meanwhile, hub genes may regulate the progression of RCC via an m6A- and immunity-dependent mechanism.
Collapse
Affiliation(s)
- Junjie Ye
- The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
- Lishui City People’s Hospital, Lishui 323000, China
| | - Peng Li
- Lishui City People’s Hospital, Lishui 323000, China
| | | | - Qi Wu
- Lishui City People’s Hospital, Lishui 323000, China
| | - Dongrong Yang
- The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| |
Collapse
|
13
|
Wu S, He H, Huang J, Jiang S, Deng X, Huang J, Chen Y, Jiang Y. FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:9295-9320. [PMID: 35942760 DOI: 10.3934/mbe.2022432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
WW domain-containing transcription regulator 1 (TAZ, or WWTR1) and Yes-associated protein 1 (YAP) are both important effectors of the Hippo pathway and exhibit different functions. However, few studies have explored their co-regulatory mechanisms in kidney renal clear cell carcinoma (KIRC). Here, we used bioinformatics approaches to evaluate the co-regulatory roles of TAZ/YAP and screen novel biomarkers in KIRC. GSE121689 and GSE146354 were downloaded from the GEO. The limma was applied to identify the differential expression genes (DEGs) and the Venn diagram was utilized to screen co-expressed DEGs. Co-expressed DEGs obtained the corresponding pathways through GO and KEGG analysis. The protein-protein interaction (PPI) network was constructed using STRING. The hub genes were selected applying MCODE and CytoHubba. GSEA was further applied to identify the hub gene-related signaling pathways. The expression, survival, receiver operating character (ROC), and immune infiltration of the hub genes were analyzed by HPA, UALCAN, GEPIA, pROC, and TIMER. A total of 51 DEGs were co-expressed in the two datasets. The KEGG results showed that the enriched pathways were concentrated in the TGF-β signaling pathway and endocytosis. In the PPI network, the hub genes (STAU2, AGO2, FMR1) were identified by the MCODE and CytoHubba. The GSEA results revealed that the hub genes were correlated with the signaling pathways of metabolism and immunomodulation. We found that STAU2 and FMR1 were weakly expressed in tumors and were negatively associated with the tumor stages. The overall survival (OS) and disease-free survival (DFS) rate of the high-expressed group of FMR1 was greater than that of the low-expressed group. The ROC result exhibited that FMR1 had certainly a predictive ability. The TIMER results indicated that FMR1 was positively correlated to immune cell infiltration. The abovementioned results indicated that TAZ/YAP was involved in the TGF-β signaling pathway and endocytosis. FMR1 possibly served as an immune-related novel prognostic gene in KIRC.
Collapse
Affiliation(s)
- Sufang Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Xiyun Deng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, Hunan, China
- School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China
| |
Collapse
|
14
|
Noor H, Zaman A, Teo C, Sughrue ME. PODNL1 Methylation Serves as a Prognostic Biomarker and Associates with Immune Cell Infiltration and Immune Checkpoint Blockade Response in Lower-Grade Glioma. Int J Mol Sci 2021; 22:ijms222212572. [PMID: 34830454 PMCID: PMC8625785 DOI: 10.3390/ijms222212572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Lower-grade glioma (LGG) is a diffuse infiltrative tumor of the central nervous system, which lacks targeted therapy. We investigated the role of Podocan-like 1 (PODNL1) methylation in LGG clinical outcomes using the TCGA-LGG transcriptomics dataset. We identified four PODNL1 CpG sites, cg07425555, cg26969888, cg18547299, and cg24354933, which were associated with unfavorable overall survival (OS) and disease-free survival (DFS) in univariate and multivariate analysis after adjusting for age, gender, tumor-grade, and IDH1-mutation. In multivariate analysis, the OS and DFS hazard ratios ranged from 0.44 to 0.58 (p < 0.001) and 0.62 to 0.72 (p < 0.001), respectively, for the four PODNL1 CpGs. Enrichment analysis of differential gene and protein expression and analysis of 24 infiltrating immune cell types showed significantly increased infiltration in LGGs and its histological subtypes with low-methylation levels of the PODNL1 CpGs. High PODNL1 expression and low-methylation subgroups of the PODNL1 CpG sites were associated with significantly increased PD-L1, PD-1, and CTLA4 expressions. PODNL1 methylation may thus be a potential indicator of immune checkpoint blockade response, and serve as a biomarker for determining prognosis and immune subtypes in LGG.
Collapse
Affiliation(s)
- Humaira Noor
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia
- Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia;
- Correspondence:
| | - Ashraf Zaman
- Faculty of Medicine, University of New South Wales, Randwick, NSW 2031, Australia;
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (C.T.); (M.E.S.)
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (C.T.); (M.E.S.)
| | - Michael E. Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (C.T.); (M.E.S.)
| |
Collapse
|
15
|
Fu S, Gong B, Wang S, Chen Q, Liu Y, Zhuang C, Li Z, Zhang Z, Ma M, Sun T. Prognostic Value of Long Noncoding RNA DLEU2 and Its Relationship with Immune Infiltration in Kidney Renal Clear Cell Carcinoma and Liver Hepatocellular Carcinoma. Int J Gen Med 2021; 14:8047-8064. [PMID: 34795513 PMCID: PMC8593347 DOI: 10.2147/ijgm.s336428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background DLEU2 is a long noncoding RNA considered important in the progression of many cancers. However, correlations between DLEU2 and kidney renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC) have rarely been reported. Methods We first analysed the expression of DLEU2 across cancers and the correlation between DLEU2 and the clinical features of KIRC and LIHC by using the “ggplot2” package in R and searched the Oncomine database and Timer website platform. We verified the expression of DLEU2 in the GEO dataset (GSE105261 and GSE45267). Receiver operating characteristic (ROC) curves were drawn using the “pROC” and “ggplot2” packages in R, and we constructed a DLEU2-based prognostic nomogram for KIRC and LIHC by using the “survival” and “rms” packages in R. Then, we analysed the correlation between DLEU2 expression and prognosis in R as well as the correlation between DLEU2 and immune cell infiltration in the TIMER database. Finally, we explored the causes of DLEU2 upregulation in the UCSC Xena and UALCAN databases. Results We found that DLEU2 was upregulated in many cancers, including KIRC and LIHC. Expression of DLEU2 is associated with tumour stage, grade, lymphatic metastasis, and distant metastasis in KIRC as well as alpha-fetoprotein (AFP), tumour stage, grade, lymphatic metastasis, and distant metastasis in LIHC. DLEU2 is an adverse factor for the prognosis of KIRC and LIHC. In addition, DLEU2 has moderate accuracy in diagnosing KIRC and LIHC and predicting their prognosis. Moreover, we found that expression of DLEU2 correlated positively with immune cell infiltration in KIRC and LIHC, and upregulation of DLEU2 in KIRC and LIHC suggests a poor prognosis based on immune cells analysis. Genetic and epigenetic analyses of DLEU2 indicate that copy number variations (CNVs) and methylation contribute to the upregulation of DLEU2. Conclusion The long noncoding RNA DLEU2 has the potential to predict the prognosis and immune infiltration of KIRC and LIHC.
Collapse
Affiliation(s)
- Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, People's Republic of China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|