1
|
Elimam H, Alhamshry NAA, Hatawsh A, Elfar N, Moussa R, Radwan AF, Abd-Elmawla MA, Elkashlan AM, Zaki MB, Abdel-Reheim MA, Mohammed OA, Doghish AS. Natural products and long noncoding RNA signatures in gallbladder cancer: a review focuses on pathogenesis, diagnosis, and drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9549-9571. [PMID: 39028332 DOI: 10.1007/s00210-024-03279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Gallbladder cancer (GBC) is an aggressive and lethal malignancy with a poor prognosis. Long noncoding RNAs (lncRNAs) and natural products have emerged as key orchestrators of cancer pathogenesis through widespread dysregulation across GBC transcriptomes. Functional studies have revealed that lncRNAs interact with oncoproteins and tumor suppressors to control proliferation, invasion, metastasis, angiogenesis, stemness, and drug resistance. Curcumin, baicalein, oleanolic acid, shikonin, oxymatrine, arctigenin, liensinine, fangchinoline, and dioscin are a few examples of natural compounds that have demonstrated promising anticancer activities against GBC through the regulation of important signaling pathways. The lncRNAs, i.e., SNHG6, Linc00261, GALM, OIP5-AS1, FOXD2-AS1, MINCR, DGCR5, MEG3, GATA6-AS, TUG1, and DILC, are key players in regulating the aforementioned processes. For example, the lncRNAs FOXD2-AS1, DILC, and HOTAIR activate oncogenes such as DNMT1, Wnt/β-catenin, BMI1, and c-Myc, whereas MEG3 and GATA6-AS suppress the tumor proteins NF-κB, EZH2, and miR-421. Clinically, specific lncRNAs can serve as diagnostic or prognostic biomarkers based on overexpression correlating with advanced TNM stage, metastasis, chemoresistance, and poor survival. Therapeutically, targeting aberrant lncRNAs with siRNA or antisense oligos disrupts their oncogenic signaling and inhibits GBC progression. Overall, dysfunctional lncRNA regulatory circuits offer multiple avenues for precision medicine approaches to improve early GBC detection and overcome this deadly cancer. They have the potential to serve as novel biomarkers as they are detectable in bodily fluids and tissues. These findings enhance gallbladder treatments, mitigating resistance to chemo- and radiotherapy.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Sheikh Zayed City, Nile University, Giza, 12588, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Wang Y, Shen K, Cheng Q, Zhou X, Liu K, Xiao J, Hu L. The long noncoding RNA ELFN1-AS1 promotes gastric cancer growth and metastasis by interacting with TAOK1 to inhibit the Hippo signaling pathway. Cell Death Discov 2024; 10:465. [PMID: 39528458 PMCID: PMC11555383 DOI: 10.1038/s41420-024-02235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric cancer (GC) is a common digestive malignancy that causes numerous cancer-related deaths. Long noncoding RNAs (lncRNAs) play a crucial role in the development of various tumors, including GC. In this study, we revealed that ELFN1-AS1, a lncRNA with aberrantly high expression, contributes to the proliferation and metastasis of GC. Mechanically, ELFN1-AS1 plays an oncogenic role by binding to the protein kinase domain of thousand and one amino acid protein kinase (TAOK1), a tumor suppressor in GC, and disrupting the TAOK1-STK3 interaction, leading to decreased STK3 phosphorylation. This decrease is accompanied by attenuation of the Hippo kinase cascade, resulting in reduced YAP1 phosphorylation, a crucial effector of the Hippo signaling pathway. Subsequently, the reduced YAP1 phosphorylation promotes its nuclear translocation, thereby enhancing the expression of MYC, a downstream target of the pathway and well-known oncogene. Taken together, the ELFN1-AS1/TAOK1/STK3/YAP1 axis may promote GC progression and is a promising target for GC treatment.
Collapse
Affiliation(s)
- Yuanhang Wang
- Department of General Surgery, Yancheng Third People's Hospital, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu Province, China.
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Kuan Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, Jiangsu Province, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinyi Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jian Xiao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Hu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Yao S, Cao B, Li T, Kalos D, Yuan Y, Wang X. Prediction-oriented prognostic biomarker discovery with survival machine learning methods. NAR Genom Bioinform 2023; 5:lqad055. [PMID: 37332657 PMCID: PMC10273194 DOI: 10.1093/nargab/lqad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023] Open
Abstract
Identifying novel and reliable prognostic biomarkers for predicting patient survival outcomes is essential for deciding personalized treatment strategies for diseases such as cancer. Numerous feature selection techniques have been proposed to address the high-dimensional problem in constructing prediction models. Not only does feature selection lower the data dimension, but it also improves the prediction accuracy of the resulted models by mitigating overfitting. The performances of these feature selection methods when applied to survival models, on the other hand, deserve further investigation. In this paper, we construct and compare a series of prediction-oriented biomarker selection frameworks by leveraging recent machine learning algorithms, including random survival forests, extreme gradient boosting, light gradient boosting and deep learning-based survival models. Additionally, we adapt the recently proposed prediction-oriented marker selection (PROMISE) to a survival model (PROMISE-Cox) as a benchmark approach. Our simulation studies indicate that boosting-based approaches tend to provide superior accuracy with better true positive rate and false positive rate in more complicated scenarios. For demonstration purpose, we applied the proposed biomarker selection strategies to identify prognostic biomarkers in different modalities of head and neck cancer data.
Collapse
Affiliation(s)
- Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Biwei Cao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tingyi Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Denise Kalos
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yading Yuan
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Lai J, Yang S, Lin Z, Huang W, Li X, Li R, Tan J, Wang W. Update on Chemoresistance Mechanisms to First-Line Chemotherapy for Gallbladder Cancer and Potential Reversal Strategies. Am J Clin Oncol 2023; 46:131-141. [PMID: 36867653 PMCID: PMC10030176 DOI: 10.1097/coc.0000000000000989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVE Gallbladder cancer (GBC) mortality remains high and chemoresistance is increasing. This review consolidates what is known about the mechanisms of chemoresistance to inform and accelerate the development of novel GBC-specific chemotherapies. METHODS Studies related to GBC-related chemoresistance were systematically screened in PubMed using the advanced search function. Search terms included GBC, chemotherapy, and signaling pathway. RESULTS Analysis of existing studies showed that GBC has poor sensitivity to cisplatin, gemcitabine (GEM), and 5-fluorouracil. DNA damage repair-related proteins, including CHK1, V-SCR, and H2AX, are involved in tumor adaptation to drugs. GBC-specific chemoresistance is often accompanied by changes in the apoptosis and autophagy-related molecules, BCL-2, CRT, and GBCDRlnc1. CD44 + and CD133 + GBC cells are less resistant to GEM, indicating that tumor stem cells are also involved in chemoresistance. In addition, glucose metabolism, fat synthesis, and glutathione metabolism can influence the development of drug resistance. Finally, chemosensitizers such as lovastatin, tamoxifen, chloroquine, and verapamil are able improve the therapeutic effect of cisplatin or GEM in GBC. CONCLUSIONS This review summarizes recent experimental and clinical studies of the molecular mechanisms of chemoresistance, including autophagy, DNA damage, tumor stem cells, mitochondrial function, and metabolism, in GBC. Information on potential chemosensitizers is also discussed. The proposed strategies to reverse chemoresistance should inform the clinical use of chemosensitizers and gene-based targeted therapy for this disease.
Collapse
Affiliation(s)
- Jinbao Lai
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Songlin Yang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Zhuying Lin
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenwen Huang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Xiao Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Ruhong Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Jing Tan
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenju Wang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| |
Collapse
|
5
|
Huang Q, Ye M, Li F, Lin L, Hu C. Prognostic and clinicopathological significance of transcription factor c-Jun in hypopharyngeal squamous cell carcinoma: a 3-year follow-up retrospective study. BMC Cancer 2022; 22:1019. [PMID: 36163022 PMCID: PMC9513886 DOI: 10.1186/s12885-022-10113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the expression and prognostic value of c-Jun in hypopharyngeal squamous cell carcinoma (HPSCC). Methods A retrospective study was performed on a cohort of 99 HPSCC patients. The expression of c-Jun and phosphorylated-c-Jun (p-c-Jun) was evaluated via immunohistochemistry (IHC) staining. Overall survival (OS) and progression-free survival (PFS) were assessed using Kaplan–Meier method and multivariate Cox regression analysis. Results The high expression of c-Jun and p-c-Jun in HPSCC accounted for 60.61% and 16.16%, respectively. High expression of c-Jun was closely associated with cT stage (p = 0.0401), tumor size (p = 0.0276), number of lymph node metastases (p = 0.0205) and pathological differentiation (p = 0.0108). The expression of c-Junhigh (p = 0.0043), p-c-Junhigh (p = 0.0376) and c-Junhigh/p-c-Junhigh were closely associated with poor OS. The Cox proportional multivariate hazard model revealed that lymphovascular invasion and c-Jun expression were independent influencing factors of OS in HPSCC patients. Conclusion Our findings suggest that c-Jun is a reliable prognostic factors in HPSCC patients.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Min Ye
- Department of Pathology, Eye & ENT Hospital Fudan University, Shanghai, 200031, China
| | - Feiran Li
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Lan Lin
- Department of Pathology, Eye & ENT Hospital Fudan University, Shanghai, 200031, China.
| | - Chunyan Hu
- Department of Pathology, Eye & ENT Hospital Fudan University, Shanghai, 200031, China.
| |
Collapse
|
6
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
7
|
Wu D, Li R, Liu J, Zhou C, Jia R. Long Noncoding RNA LINC00467: Role in Various Human Cancers. Front Genet 2022; 13:892009. [PMID: 35719391 PMCID: PMC9198549 DOI: 10.3389/fgene.2022.892009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
Intricate genetic mutations promote the progression of different cancer types. Long noncoding RNAs (lncRNAs) have been widely demonstrated to participate in the genomic activities of various human cancers. Long intergenic non-coding RNA 467 (LINC00467) is an upregulated lncRNA in diverse diseases, especially in several types of cancers. Functional experiments of LINC00467 revealed that LINC00467 overexpression enhanced cell chemoresistance, proliferation, migration, and invasion in several types of cancers. Moreover, overexpressed LINC00467 was associated with a poor clinical prognosis. The present evidence suggests that LINC00467 may serve as a promising prognostic indicator and become a novel cancer therapeutic target. In this review, we introduce the biologic functions of lncRNAs and describe the molecular mechanism and clinical significance of LINC00467 in detail.
Collapse
Affiliation(s)
- Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|