1
|
Li H, Jin X, Li W, Ren F, Li T, Li X, Yu H, Fu D, Song Z, Xu S. Construction of a circRNA-miRNA-mRNA Regulatory Network for the Immune Regulation of Lung Adenocarcinoma. Biol Proced Online 2025; 27:13. [PMID: 40211126 PMCID: PMC11983969 DOI: 10.1186/s12575-025-00275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Recent research has highlighted the significance of circular RNAs (circRNAs) as pivotal regulators in the progression of tumors and the therapeutic response in non-small cell lung cancer (NSCLC). These circRNAs function through a sponge mechanism, interacting with microRNAs (miRNAs) to modulate mRNA expression levels. Nevertheless, the precise role of the circRNA-miRNA-mRNA regulatory network in immune regulation within lung adenocarcinoma (LUAD) remains inadequately understood. METHODS AND MATERIALS We utilized microarray datasets from the GEO NCBI database (GSE101586) to identify differentially expressed circRNAs (DEcircRNAs) in LUAD. CircBank was employed to predict the target miRNAs of DEcircRNAs, which were subsequently intersected with miRNAs from the GSE36681 database. The identified miRNAs were then predicted to target mRNAs using miRDB and miWalk, and intersections with immune-related genes from the IMMPORT database were analyzed. Protein-protein interaction (PPI) networks were constructed using Cytoscape software. The DAVID functional annotation tool was utilized to explore potential biological processes, molecular functions, and KEGG pathways associated with LUAD. Gene expression and Kaplan-Meier survival analyses were conducted to establish a key regulatory network and to assess immune cell infiltration and Pearson correlation for significant target genes. Finally, we selected the most significantly upregulated circRNA with differential expression for validation through in vitro experiments. RESULTS Our analysis identified a total of 7 upregulated and 42 downregulated circRNAs, along with 10 significant miRNAs and 20 target mRNAs. KEGG enrichment analysis indicated that these components are primarily enriched in the ErbB signaling pathway. Furthermore, Gene Ontology (GO) analysis revealed significant enrichment in responses to organic substances, cytokine-mediated signaling pathways, cellular responses to cytokines, responses to chemical stimuli, steroid hormone receptor activity, ErbB-3 class receptor binding, oxysterol binding, signal receptor activity, and molecular transducer activity. Notable core mRNAs identified included OAS1, VIPR1, and PIK3R1. Subsequently, we constructed a regulatory network comprising 6 DEcircRNAs, 3 DEmiRNAs, and 3 DEmRNAs. Through ssGSEA and CIBERSORT analyses, we observed significant differences in immune cell infiltration levels between the NSCLC cohort and the control group. Knocking down the expression of hsa_circ_0079557 significantly inhibited the viability, proliferation, migration, and invasion of LUAD cells. CONCLUSION We have established a circRNA-miRNA-mRNA regulatory network that offers novel insights into the molecular mechanisms governing immune regulation in LUAD. Future research should aim to translate these findings into clinical applications to enhance patient outcomes.
Collapse
Affiliation(s)
- Hanyi Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Haochuan Yu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Liu D, Wang H, Fang J, Luo J, Lu K, Liu G, Liu L. LncRNA PVT1 promotes proliferation and migration in gallbladder adenocarcinoma by modulating miR-2355-5p/AGO1 axis. In Vitro Cell Dev Biol Anim 2025; 61:403-415. [PMID: 40346419 DOI: 10.1007/s11626-025-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/22/2025] [Indexed: 05/11/2025]
Abstract
To investigate how lncRNA plasmacytoma variant translocation 1 (PVT1) contributed to the pathogenesis of gallbladder adenocarcinoma (GBA). Bioinformatics techniques were used to analyze differentially expressed lncRNA, and downstream miRNA and mRNA were identified using databases. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were utilized to analyze the RNA and protein expressions in different cells. The binding relationships between different genes were confirmed utilizing luciferase assay and RNA Immunoprecipitation (RIP) assay. Cell growth and migration were examined through CCK-8, colony formation, and Transwell assays. Several in vivo experiments were utilized to determine how the PVT1/miR-2355-5p/AGO1 pathway on tumor growth. Elevated PVT1 was observed in GBA cells, which may further aggravate cell malignant properties. Based on bioinformatics analysis, an interaction between miR-2355-5p and either PVT1 or AGO1 was identified, which was confirmed utilizing dual luciferase reporter assays and RIP assays. Silencing PVT1 (si-PVT1) led to a reduction in AGO1 expression, while depletion of miR-2355-5p reversed this effect. In vivo, PVT1 knockdown significantly inhibited tumor growth, an effect that was reversed by miR-2355-5p downregulation. This study showed that PVT1 facilitated GBA progression via the modulation of the miR-2355-5p/AGO1 axis. These findings underscored the potential therapeutic significance of targeting the lncRNA PVT1 in the treatment of GBA.
Collapse
Affiliation(s)
- Dong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - He Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jun Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jialin Luo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ke Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Guan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Luying Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Xu X, Long C, Li M, Shen C, Ye Q, Li Y, Li H, Cao X, Ma J. Systematic review and meta-analysis: diagnostic accuracy of exosomes in pancreatic cancer. World J Surg Oncol 2025; 23:51. [PMID: 39953585 PMCID: PMC11827209 DOI: 10.1186/s12957-025-03666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/19/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Early, non-invasive identification can generally enhance the survival rate for asymptomatic pancreatic cancer (PC). This systematic review and meta-analysis is conducted to evaluate the precision of diagnosing PC using serum and duodenal fluid exosomes. METHODS Following the guidelines of PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses), searches were conducted in the PubMed, Embase, Cochrane Library, and Web of Science databases in April 2024. A study was considered appropriate if it provided diagnostic precision and accuracy for patients with pancreatic cancer. The combined diagnostic impact was assessed by calculating the area beneath the aggregated SROC curve, and the quality of the studies included was evaluated using the QUADAS-2 checklist. All statistical evaluations and graphical representations utilized STATA 14.0. RESULTS Employing the terms "exosomes" and "pancreatic cancer" along with the search methodology, research was conducted across PubMed, Web of Science, Cochrane, and Embase databases. A total of 1202 studies were extracted from the databases, out of which nine were ultimately selected based on specific inclusion and exclusion standards. Across eight studies, exosomes were isolated from serum, while in a different one, they were taken from duodenal fluid. This document conducts subgroup analyses focusing on various types of exosome biomarkers, their origins, isolation techniques, and methods for analyzing biomarkers. Within the subset of exosome biomarker types, the group with exosomal cell surface proteoglycan exhibited the greatest combined sensitivity (0.96 (95% CI = 0.81-0.99) and specificity (0.90 (95% CI = 0.83-0.95)). Additionally, the set of exosomal cell surface proteoglycans showed the highest aggregated diagnostic ratio (215.92), combined positive likelihood ratio (9.96), area under the curve (0.93), and kombiniertes negative Likelihood-Ratio (0.05). The combined sensitivity of serum-derived exosomes stood at (0.86 (95% CI = 0.77-0.92)), the collective specificity at (0.83 (95% CI = 0.77-0.89)), the aggregate positive likelihood ratio at (5.22), the combined diagnostic ratio at (31.48), the overall area beneath the curve at (0.91), and the combined negative likelihood ratio at (0.17). Within the subgroup examination of exosome isolation techniques, ultracentrifugation emerged as the most sensitive method (0.90 (95% CI = 0.74-0.97)), the most specific method (0.89 (95% CI = 0.83-0.93)), the top positive likelihood ratio (8.35), the highest diagnostic ratio (76.48), the largest combined curve area (0.92), and the smallest negative likelihood ratio (0.11) in the aggregated data. Within the subset of biomarker analysis methods, the aggregate sensitivity via qRT-PCR was (0.84 (95% CI = 0.74-0.90)), the collective specificity (0.78 (95% CI = 0.64-0.87)), the aggregate diagnostic ratio (18.11), the aggregate area under the curve (0.88), the aggregate positive likelihood ratio (3.77), and the combined negative likelihood ratio (0.21). CONCLUSION Overall, exosomes are still valuable in the diagnosis of pancreatic cancer. In subgroup analyses, the proteoglycan found on exosomal cell surfaces is highly valuable for diagnosing pancreatic cancer. The more frequent separation method used in the nine included studies was ultracentrifugation, and it did demonstrate good data. Nonetheless, to verify their practicality and usefulness in clinical environments, a significant amount of clinical trials are still necessary.
Collapse
Affiliation(s)
- Xinyi Xu
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Chunyue Long
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng Li
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Chen Shen
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Qiuwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Yong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Hongyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Xia Cao
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China.
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China.
| |
Collapse
|
4
|
Yang J, Luo Y, Yao Z, Wang Z, Jiang K. Theoretical perspectives and clinical applications of non-coding RNA in lung cancer metastasis: a systematic review. Discov Oncol 2025; 16:169. [PMID: 39937377 PMCID: PMC11822152 DOI: 10.1007/s12672-025-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer is one of the deadliest malignancies worldwide, with distant metastasis being a major cause of death. However, the specific mechanisms of lung cancer metastasis remain unclear. NcRNAs, a widely present type of non-coding RNAs in the body, constitute about 98% of the human genome, lacking protein-coding capacity but involved in various cellular processes such as proliferation, apoptosis, invasion, and migration. Studies have shown that ncRNAs play a crucial role in the metastasis of lung cancer, although research in this area is limited. This review summarizes the biological origins and functions of ncRNAs, their specific roles and mechanisms in lung cancer metastasis, and discusses their potential for early screening and therapeutic applications in lung cancer. Furthermore, it outlines the challenges in translating basic advancements of ncRNAs in lung cancer metastasis into clinical practice.
Collapse
Affiliation(s)
- Jie Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yi Luo
- The Clinical Medical College, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zuhuan Yao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Zhao L, Song Q, Zheng C, Sun W, Chen Y. TWIST1 Regulates FOXM1/β-Catenin to Promote the Growth, Migration, and Invasion of Ovarian Cancer Cells by Activating MFAP2. J Biochem Mol Toxicol 2025; 39:e70140. [PMID: 39829397 DOI: 10.1002/jbt.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC. GEPIA (a database for gene expression analysis) and UALCAN (a database containing comprehensive cancer transcriptome and clinical patient data) investigated TWIST1's connection to MFAP2 and patient survival in ovarian serous cystadenocarcinoma (OV). Human OC cells (A2780 and CAOV3) were transfected with si-TWIST1, oe-TWIST1, oe-MFAP2, or si-TWIST1 + oe-MFAP2. Cellular apoptosis, viability, migration, and invasion were detected. TWIST1, MFAP2, FOXM1, and β-catenin protein expressions were tested. Dual-luciferase and ChIP-qPCR validated the correlation between MFAP2 and TWIST1. Moreover, OC mice were established by injecting OC cells subcutaneously. The pathology, apoptosis, as well as Ki67, TWIST1, MFAP2, FOXM1, and β-catenin protein levels of tumors were assessed. TWIST1 expression positively correlated with MFAP2 expression, but negatively related to patients' survival in OV. TWIST1 overexpression promoted malignant behaviors, and increased MFAP2, FOXM1, and β-catenin protein levels for OC cells. TWIST1 knockdown exhibited the opposite trend. In vivo, TWIST1 knockdown disrupted tissue structure, induced apoptosis, decreased Ki67, TWIST1, MFAP2, FOXM1, and β-catenin protein levels in tumor. Interestingly, MFAP2 overexpression reversed the effects of TWIST1 knockdown in vitro and in vivo. Additionally, dual-luciferase and ChIP-qPCR confirmed MFAP2 was a downstream target for TWIST1 in OC. TWIST1 regulated FOXM1/β-catenin to promote the growth, migration, and invasion of OC cells by activating MFAP2, indicating that targeting TWIST1 may be effective for treating OC.
Collapse
Affiliation(s)
- Lingqin Zhao
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qian Song
- Department of Gynecologic Oncology, Taizhou Cancer Hospital, Wenling, Zhejiang, China
| | - Chao Zheng
- Department of Oncology, Taizhou Cancer Hospital, Wenling, Zhejiang, China
| | - Wei Sun
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yaqing Chen
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Huang G, Liu Y, Li L, Li B, Jiang T, Cao Y, Yang X, Liu X, Qu H, Li S, Zheng X. Integration analysis of microRNAs as potential biomarkers in early-stage lung adenocarcinoma: the diagnostic and therapeutic significance of miR-183-3p. Front Oncol 2024; 14:1508715. [PMID: 39759146 PMCID: PMC11697600 DOI: 10.3389/fonc.2024.1508715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) poses a significant therapeutic challenge, primarily due to delayed diagnosis and the limited efficacy of existing treatments. Methods To understand the pathogenesis and identify diagnostic biomarkers for LUAD in the early stage, we investigated differential miRNA expression in 33 stage I LUAD patients between tumor and matched paracancerous tissues by Illumina Sequencing. Target genes of differentially expressed miRNAs were predicted using TargetScan and miRDB databases and further analyzed by GO and KEGG pathway enrichment analysis. The miRNAs expression results were verified using qRT-PCR. Additionally, we evaluated the clinical significance of miRNAs by the TCGA database. miR-183-3p was chosen for subsequent biological functional studies by cell proliferation assays, cell migration and cell invasion assays, cell apoptosis and cell cycle assays in LUAD cells. The clinical relevance target genes of miR-183-3p were predicted by TargetScan databases and bioinformatics assays. Gene-specific experimental validation was performed using qRT-PCR, western blotting and luciferase reporter assays. Results We identified 36 differentially expressed miRNAs between LUAD tissues and matched paracancerous tissues. Target genes for these miRNAs revealed associations with processes and pathways such as RNA biosynthesis, intracellular signaling, protein transport, and the Ras, MAPK, and PI3K-AKT pathways. The qRT-PCR results were in alignment with the sequencing data for 19 out of these 21 miRNAs which not yet implicated in LUAD, 13 were up-regulated, 6 were down-regulated. The clinical relevance assays showed that 5 up-regulated miRNAs have diagnostic value for LUAD. miR-183-3p showed significant advantages in the result of sequencing, qRT-PCR, and clinical relevance assay. Biological functional assays showed that miR-183-3p emerged as a key regulator, promoting LUAD cell proliferation, decreasing apoptosis, and augmenting migration and invasion capabilities. The clinical relevance assays and experimental validation showed SESN1 as a clinical significance target of miR-183-3p. Discussion Our study lays the foundation for investigating miRNAs with diagnostic significance in early-stage LUAD, pointing out that inhibition of miR-183-3p may serve as a novel therapeutic in LUAD.
Collapse
Affiliation(s)
- Guodong Huang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yuxia Liu
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lisha Li
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Bing Li
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Ting Jiang
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Yufeng Cao
- Cancer Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xiaoping Yang
- Department of Respiration, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Xinning Liu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Honglin Qu
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| | - Shitao Li
- Department of Respiration, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zheng
- Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong, China
| |
Collapse
|
8
|
Zhou Y, Cui H, Liu D, Wang W. MSTCRB: Predicting circRNA-RBP interaction by extracting multi-scale features based on transformer and attention mechanism. Int J Biol Macromol 2024; 278:134805. [PMID: 39153682 DOI: 10.1016/j.ijbiomac.2024.134805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
CircRNAs play vital roles in biological system mainly through binding RNA-binding protein (RBP), which is essential for regulating physiological processes in vivo and for identifying causal disease variants. Therefore, predicting interactions between circRNA and RBP is a critical step for the discovery of new therapeutic agents. Application of various deep-learning models in bioinformatics has significantly improved prediction and classification performance. However, most of existing prediction models are only applicable to specific type of RNA or RNA with simple characteristics. In this study, we proposed an attractive deep learning model, MSTCRB, based on transformer and attention mechanism for extracting multi-scale features to predict circRNA-RBP interactions. Therein, K-mer and KNF encoding are employed to capture the global sequence features of circRNA, NCP and DPCP encoding are utilized to extract local sequence features, and the CDPfold method is applied to extract structural features. In order to improve prediction performance, optimized transformer framework and attention mechanism were used to integrate these multi-scale features. We compared our model's performance with other five state-of-the-art methods on 37 circRNA datasets and 31 linear RNA datasets. The results show that the average AUC value of MSTCRB reaches 98.45 %, which is better than other comparative methods. All of above datasets are deposited in https://github.com/chy001228/MSTCRB_database.git and source code are available from https://github.com/chy001228/MSTCRB.git.
Collapse
Affiliation(s)
- Yun Zhou
- College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Haoyu Cui
- College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
| | - Dong Liu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Wei Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
9
|
Shen Y, Han R, Yu X, Mao J. Hsa_circ_0079929 in lung adenocarcinoma and its biological implications in lung adenocarcinoma progression. J Cardiothorac Surg 2024; 19:549. [PMID: 39342367 PMCID: PMC11437964 DOI: 10.1186/s13019-024-03075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This report investigated the expression, prognostic and biological implications of hsa_circ_0079929 in lung adenocarcinoma, which was based on clinical and experimental data. METHODS Patients with lung adenocarcinoma were screened and their clinical data and tissues (including cancerous tissues and adjacent normal tissues) were collected. The total RNA in tissues and cell lines was analyzed to obtained hsa_circ_0079929 level. The clinical significance was examined using the Chi-square test, Multi-variate Cox proportional hazards regression, and Kaplan-Meier curve. Cell malignant features were evaluated from three aspects (proliferation, migration, and invasion), detected by CCK-8 and Transwell methods. RESULTS Hsa_circ_0079929 raised in expression level in lung adenocarcinoma. This upregulation of hsa_circ_0079929 was correlated with adverse clinical parameters and poor outcome in terms of overall survival, resulting in an independent prognostic purpose molecular for overall survival. Overexpression of hsa_circ_0079929 could contribute to cell proliferation/migration/invasion, whereas its knockdown could inhibit these malignant features. Hsa_circ_0079929 was a molecular decoy for miR-1184 in lung adenocarcinoma cells. CONCLUSIONS Hsa_circ_0079929 could promote the malignant features of lung adenocarcinoma cells and may aid the follow up and therapeutic target discovery of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Shen
- Department of Internal Medicine, Huzhou Jiaotong Hospital, Huzhou, 313000, China
| | - Ruixue Han
- Department of Oncology, Yuhuan Second People's Hospital, Yuhuan, 317605, China
| | - Xin Yu
- Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji, 311800, China
| | - Jing Mao
- Department of Respiratory and Critical Care Medicine, Binhai County People's Hospital, No. 299, Haibin Avenue, Binhai County, Yancheng, 224500, China.
| |
Collapse
|
10
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
11
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
12
|
Kahkesh S, Khoshnazar SM, Gholinezhad Y, Esmailzadeh S, Hosseini SA, Alimohammadi M, Mafi A. The potential role of circular RNAs -regulated PI3K signaling in non-small cell lung cancer: Molecular insights and clinical perspective. Pathol Res Pract 2024; 257:155316. [PMID: 38692125 DOI: 10.1016/j.prp.2024.155316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.
Collapse
Affiliation(s)
- Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Hosseini
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Ning J, Luo Y, Chen L, Xiao G, Tanzhu G, Zhou R. CircRNAs and lung cancer: Insight into their roles in metastasis. Biomed Pharmacother 2023; 166:115260. [PMID: 37633056 DOI: 10.1016/j.biopha.2023.115260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. A major contributing factor to the poor survival rates in lung cancer is the high prevalence of metastasis at the time of diagnosis. To address this critical issue, it is imperative to investigate the mechanisms underlying lung cancer metastasis. Circular RNAs (circRNAs), a distinct type of ribonucleic acid characterized by their unique circular structure, have been implicated in the progression of various diseases. Recent studies have highlighted the close association between circRNAs and the occurrence and development of lung cancer, particularly in relation to metastasis. In this review, we provide a concise overview of the expression patterns and prognostic significance of circRNAs in lung cancer. Additionally, we summarized the current understanding of the clinical relevance of circRNAs in lung cancer metastasis. Furthermore, we systematically focused on the roles of circRNAs in each step of lung cancer metastasis, reflecting the sequential progression of this process. Notably, circRNAs exhibit dual functionality in lung cancer metastasis, acting both as facilitators and inhibitors of metastatic processes. Given their potential, circRNAs hold promise as novel biomarkers and therapeutic targets for lung cancer metastasis, warranting further investigation.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Luo
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
14
|
Tu G, Peng W, Peng X, Zhao Z, Shi S, Cai Q, He B, Yin W, Peng S, Wang L, Yu F, Wang X. hsa_circ_0000519 promotes the progression of lung adenocarcinoma through the hsa-miR-1296-5p/DARS axis. Am J Cancer Res 2023; 13:3342-3367. [PMID: 37693148 PMCID: PMC10492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Emerging research indicates that circRNAs serve a crucial role in occurrence and development of cancers. This study aimed to uncover the biological role of hsa_circ_0000519 in the progression of LUAD (lung adenocarcinoma). hsa_circ_0000519 was identified by bioinformatic analysis, and its differential expression was validated in LUAD tissues and cell lines. CCK8, colony formation, wound healing, transwell assays, and xenograft tumor models were used to observe the biological functions of hsa_circ_0000519. FISH, RIP, dual luciferase reporter assays, and recovery experiments were implemented to explore the underlying mechanisms of hsa_circ_0000519. hsa_circ_0000519 was significantly upregulated in LUAD tissues and cell lines. The expression of hsa_circ_0000519 was positively correlated with T grade and TNM stage in patients with LUAD. Downregulation of hsa_circ_0000519 remarkably reduced cell proliferation, migration, invasion in vitro, and tumor growth in vivo. Mechanistic investigation demonstrated that hsa_circ_0000519 directly sponged hsa-miR-1296-5p to reduce its repressive impact on DARS as well as activate the PI3K/AKT/mTOR signaling pathway. The malignant phenotypes of LUAD cells induced by upregulation of hsa_circ_0000519 could be rescued by hsa-miR-1296-5p overexpression or knockdown of DARS. In conclusion, hsa_circ_0000519 promotes LUAD progression through the hsa-miR-1296-5p/DARS axis and may be expected as a novel biomarker and therapeutic for LUAD.
Collapse
Affiliation(s)
- Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan UniversityChangsha 410082, Hunan, China
- School of Computer Science, National University of Defense TechnologyChangsha 410073, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
15
|
Cao C, Wang Y, Wu X, Li Z, Guo J, Sun W. The roles and mechanisms of circular RNAs related to mTOR in cancers. J Clin Lab Anal 2022; 36:e24783. [PMID: 36426933 PMCID: PMC9757007 DOI: 10.1002/jcla.24783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/13/2022] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are stable molecules with covalently closed structures that have an irreplaceable role in the occurrence, progression, and even treatment of plenty of cancers. Mammalian/mechanistic target of rapamycin (mTOR) is a key regulator in cancers and plays several biological functions, such as proliferation, migration, invasion, autophagy, and apoptosis. METHODS All data were collected through PubMed and CNKI, using terms including "circRNA," "mTOR," "caner," "signaling pathway," "biomarker," "diagnosis," "treatment." Articles published in Chinese and English were included. RESULTS In this review, the expression, function, and mechanism of circRNA-associated mTOR in cancers were described. CircRNA-associated-mTOR can regulate the progression and therapy of a variety of cancers in multiple signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mTOR, mitogen-activated protein kinase (MAPK)/mTOR, and AMP-activated protein kinase (AMPK)/mTOR axis. These cancers including esophageal carcinoma (circLPAR3, ciRS-7), gastric cancer (circNRIP1, hsa_circ_0010882, hsa_circ_0000117, hsa_circ_0072309, and circST3GAL6), colorectal cancer (hsa_circ_0000392, hsa_circ_0084927, hsa_circ_0104631, and circFBXW7), liver cancer (circC16orf62, hsa_circ_100338, hsa_circ_0004001, hsa_circ_0004123, hsa_circ_0075792, hsa_circ_0079299, and hsa_circ_0002130), pancreatic cancer (circ-IARS and circRHOBTB3), renal carcinoma (ciRS-7), bladder cancer (circUBE2K), prostate cancer (circMBOAT2 and circ-ITCH), ovarian cancer (circEEF2, circRAB11FIP1, circMYLK, and circTPCN), endometrial cancer (hsa_circ_0002577 and circWHSC1), lung cancer (circHIPK3, hsa_circ_0001666), thyroid cancer (hsa_circ_0007694 and hsa_circ_0008274), glioma (circGFRA1, circ-MAPK4, circPCMTD1, and hsa_circ_0037251), osteosarcoma (circTCF25), leukemia (circ-PRKDC), and breast cancer (hsa_circ_0000199, circUBAP2, and circWHSC1).
Collapse
Affiliation(s)
- Chunli Cao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- The Affiliated People's HospitalNingbo UniversityNingboChina
| | - Yao Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Xinxin Wu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Zhe Li
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of PathophysiologyMedical School of Ningbo UniversityNingboChina
- Department of GastroenterologyThe Affiliated Hospital of Medical School, Ningbo UniversityNingboChina
- Institute of Digestive Diseases of Ningbo UniversityNingboChina
| | - Weiliang Sun
- The Affiliated People's HospitalNingbo UniversityNingboChina
| |
Collapse
|
16
|
Li J, Li P, Shao J, Liang S, Wan Y, Zhang Q, Li C, Li Y, Wang C. Emerging Role of Noncoding RNAs in EGFR TKI-Resistant Lung Cancer. Cancers (Basel) 2022; 14:cancers14184423. [PMID: 36139582 PMCID: PMC9496789 DOI: 10.3390/cancers14184423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer accounts for the majority of malignancy-related mortalities worldwide. The introduction of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and significantly improved the overall survival (OS) of lung cancer. Nevertheless, almost all EGFR-mutant patients invariably acquire TKI resistance. Accumulating evidence has indicated that noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have a central role in the tumorigenesis and progression of lung cancer by regulating crucial signaling pathways, providing a new approach for exploring the underlying mechanisms of EGFR-TKI resistance. Therefore, this review comprehensively describes the dysregulation of ncRNAs in EGFR TKI-resistant lung cancer and its underlying mechanisms. We also underscore the clinical application of ncRNAs as prognostic, predictive and therapeutic biomarkers for EGFR TKI-resistant lung cancer. Furthermore, the barriers that need to be overcome to translate the basic findings of ncRNAs into clinical practice are discussed.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyi Li
- Department of Anesthesiology, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuntian Wan
- West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiran Zhang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changshu Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (C.W.)
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (C.W.)
| |
Collapse
|
17
|
Wang S, Xiao F, Li J, Fan X, He Z, Yan T, Yang M, Yang D. Circular RNAs Involved in the Regulation of the Age-Related Pathways. Int J Mol Sci 2022; 23:ijms231810443. [PMID: 36142352 PMCID: PMC9500598 DOI: 10.3390/ijms231810443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently circular noncoding RNAs that have been extensively studied in recent years. Aging is a process related to functional decline that is regulated by signal transduction. An increasing number of studies suggest that circRNAs can regulate aging and multiple age-related diseases through their involvement in age-related signaling pathways. CircRNAs perform several biological functions, such as acting as miRNA sponges, directly interacting with proteins, and regulating transcription and translation to proteins or peptides. Herein, we summarize research progress on the biological functions of circRNAs in seven main age-related signaling pathways, namely, the insulin-insulin-like, PI3K-AKT, mTOR, AMPK, FOXO, p53, and NF-κB signaling pathways. In these pathways, circRNAs mainly function as miRNA sponges. In this review, we suggest that circRNAs are widely involved in the regulation of the main age-related pathways and are potential biomarkers for aging and age-related diseases.
Collapse
Affiliation(s)
- Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (M.Y.); (D.Y.); Tel.: +86-28-86290991 (M.Y.)
| |
Collapse
|